D-A132 612 THE SOFTWARE ENGINEERING PROTOTYPE(CU> NAYAL 1/3
POSTGRADUATE SCHOOL MONTEREY CR M R KIRCHNER JUN 83

3

UNCLRSSIFIED F/G 9/2

a3
. o o~ o~
y =
: dAaa

: , O of o . R}
’ n—n—&n—n—muu._“

2l =l

16

L

1.4

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

Iz |

[APLATCAAN . . SCEROOA ¢ - N A FORORPRTON AR POCARIIN. § © (BORTORIONIT & MIOOORIEE @

NAVAL POSTGRADUATE SCHOOL

Monterey, Galifornia

ADA 132¢6/2

DTIC

THESIS < —a

THE SOFTWARE ENGINEERING PROTOTYPE

by
Michael R. Kirchner

June 1983

Thesis Advisor: Gordon C. Howell

Approved for public release; distribution unlimited

DTIC FILE copy

FLeCTR
SEP 3 01983
3
)|
K
Y
y
y
]
’
DO P G WGP -&4—‘

e . A S i e e B S S S Y T T T rrrwerr ey

SECURITY CLASSIPICATION OF THIS PAGE ("han Date Entered)

READ INSTRUCTIONS
Y. REPSAY NUNBER 2. GOVT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER
AD HA132612
4. TITLE (and Subtitle) $. TYPE OF REPORT & PERIOD COVERED
The Software Engineering Prototype Master's Thesis
June, 1983

6. PERFORMING ORG. REPORT NUMBER

L T) % CONTRACT OR GRANT WUMBER(e]
Michael R. Kirchner

5. PERPORMING ORGANITATION NAME AND ADORESS . FROGAAM ELEMENT. PROJECT. TASK
Naval Postgraduate School AREA & WORK UNIT NUMBERS
Monterey, California 93940

1. CONTROLLING OF FICE NAME AND ADORESS 12. REPORT DATE
Naval Postgraduate School June, 1983
Monterey, California . ui.aaan OF PAGES

[NG AGEN NAME & ADODRRSS(/ different frem EMWMM Office) 18. SECURITY CLASS. (of this report)

| UNCLASSIFIED |
18a. OECL ASSIFICATION/ DOWNGRADING
SCHEDULE

[MOUTION STA NT (of thie Repert)
Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of (he sbetrast entered in Bleck 20, Il different from Repert)

L ——— ot S
18. SUPPLEMENTARY NOTES

L ————————
19. KLY WORDS (Continve en reverse olde iIf nesosoary and idontily by block number)

software engineering, software prototype, software design,
design theories, software engineering environments, case
studies, software development, information systems development,
system development life cycle

. ————— Y
20. ABSTRACT (Cantinue en roverse side il neceseary and identify by bdlock bee)

Experience has shown that the traditional method of software de-
velopment often has poor results. Recently, a new approach to
software development, the prototype approach, has been proposed.
This thesis presents an integrated view of general design theorie
and relates that view to software design and development. The
current thought on prototypes is described and the basic require-
ments for a software engineering environment are presented. (Cont)

o

o

e
K
—

0D . €DITION OF | NOV 68 IS OBSOLETR
$/N 0102 LK 014 6601

1 secURITY GLASSIFICATION OF THIS PAGE (When Date Enterec

R
H

.

\ S
.

R
Peatyet .

LA S

fe bt
v
o

n" :l' u‘ H

LI i A
b

8, %;
* L

(AR
P A

N
. |

.
.
ats s

AP A

UL SRR

.
&

o
€'e’e

A? 5 W e
. e N

Pl

- !i'! " ‘lJl
M SR

in?

S roin ardl g bk ol Wadl Sl Ml Al M T AR RN A Su/ Sl ma o f0nnh e e A e el Sl R A ar s S A NS Ty ‘_“1
¢ sccu;uvv CLASSIFICATION OF THIS PAGE (When Date Entere)
ABSTRACT (Continued) Block # 20

designs.
and recommendations

Software prototypes are shown to suppor
Four case studies of using pr
for further study are made. .

t the integrated view of
ototypes are presented

i M
1 «
-
. - .
*
.
H
»
-
.
\
)
1 st

’:;;\ .

/

S/ N 0102- LF-014- 6601

2 SECURITY CLASSIFICATION OF THIS PAGR(When Date Entored)

N L S NS G Y W T

Apprcved for public release; distribution unlimiczed.

The Softwvare Bngineering Prototype
by

Michael R. Kirchner
B.S., Illinois Benedictine College, 1973

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OP SCIENCE IN INFORMATION SYSTEMS

from “he

NAVAL POSTGRADUATE SCHOOL
June 1983

Author: 74W"m<,£_ /&—7 f)/ uwﬂmv

Ll T

Chairman, Department of Administrative Sciernces

e R M
\ | Y\
Dean of Informatlicy Sciences

Approved ty:

Sacond Reader

R L S R T e T Ty T —————— " o I ———

.-:;:

.

{ ABSTBACT -

¢§ ‘“Experience bas shown +*hat <the traditional methcd of

ﬁ? software developaen* often has poor rasults. Recently, a
; new approach to softwvare dJevelopment, ~he pTotctype

Qj approach, has been prcposed. This thesis presents an inte-

f' grated view cf general design theories and reslates that view

= to software design and development. The current thought on

:' protctypes is described and the basic rcequirements for a

ﬂ: software engineering environment are presen<ad. Software

f; Frototypes are shown ¢to support the integrated view of

- design. Four case studies ¢f using prototypes are presented

2 and recommendaticns fcr further study are made.

- r

A

\:;

o

~

2

-

o u

'.I

.:4

v

R D I A T

T T T T T T T TOeTTT Ty

TABLE CP CONTENTS

I. I'Txcwcr IO“ L] L] - L] L] L] L] L [) L d L] L J - L) - - * * L] 10

1I. MODELS OF DESIGN METHODS o ¢ « ¢ o ¢ o o o o o o o 12
A. STRUCTUREL MODELS OF DESIGN .« « « « o o o « o 12
B. WICKED PRCELEMS . ¢ o <« « ¢ « o =« o o o o o « 15
C. ACCUMULATEL KNOWLEDGE MODELS OP DESIGN 18

1. Design is Argumentativa 18
2, Dattarns in Design . . ¢ .« 2 s o e ¢ o o o 18
3. Designas Learning . « ¢« « ¢ ¢ ¢« o o o o o 19
4. Design is Ssatisficing . ¢« ¢« ¢ « ¢ « o o o 20
C. CESIGN AS A TECHNOLOGICAL ACTIVITY . . . « . . 21
E. DESIGN IS EVOLUTIONARY . ¢ ¢ + « o o ¢« o o o o 21
Fo SUMMABY . o o o o o ¢ o o« o o o s o o = o« o o 23

III. SOPTWARE DESIGN METHCDS .« o« o « ¢ o ¢ o o« o o o o 25
A. SOFTWARE [CESIGN IS SYMMETRICAL AND ADAPTIVE . 25
B. LESIGN IS SATISPICING .« o« ¢ « ¢ o o o« o o« o+ o« 26
C. SOPTWARE [CESIGN IS A WICKED PROBLEM® 28
D. COMMUNICATIONS BETWEEN THE DESIGNER AND THE
ENEC USER ¢« ¢ o o o o « o o« o o o o o o o« o« o o o o 33
E. SOPTWARE CESIGN IS LEABNING . « ¢« « ¢ « « « « 35
F. SOFTWARE [ESIGN HAS AN ORGANIZATIONAL CONTEXT 40
G. SOPTWARE LCESIGN IS EVOLUTIONARY« . . o 43
He SUMMARY =« o o o o o ¢ o o o o o o o o o o« o » 47

Iv. THE SOPTWARE EROTOTYEE « o « « o o = « o« o« o « o « 49
A. INTRODUCTICN . . o o 2 ¢ ¢« o o o « o« o « o « o @9
B THE PROTOTIYPE PRCCESS . « « « « « ¢ « « o o« « 50
C. PROTOTYPES AS MODELS ¢ ¢ « « ¢ « s o o o o o « 51
D. STRATEGIES TO PRODUCE PROTOTYPES . « . « . « « 953

1. The 'MNMethodology*' Strategy .

2. Executable Specifications . .

3. Automatic Programaing

USES OF PEOTOTYPES . ¢ « o o o & .

1. To Clarify the User's Requirements

2. To Verify the Peasibility of Design

3. To Create the Piral System
F. PROTOTYPES ADDRESS THE ESSENTIAL DESIGN
ELEMENTS ¢ ¢ « ¢ ©« ¢« © o o o a o o o ¢« o o o e

Prototyping is a Symmetrical and Adaptable

Process L] L] - [] - L] * * L] L] L] L] [] - [] L] L]
Prototyping 'Tames' ths Wicked Problem . .

Software Prototyping is Satisficirg . . .
Prototyping is Ccmmunicating
The Scftware Prototype is a Learning Aid
The Prctotype Processs Accounts for
Organizational Issues . . « « « « «
7. The Prctotype Process is Evolutiorary
G. SOMMARY AND INTERMEDIATE CONCLUSIONS . .

THE SOFTWARE ENGINEEERING ENVIRONMENT
A. INTRODUCTICN ¢ ¢ « o o o e o o = o o o &
B. CHARACTERISTICS OF SOFTWARE ENGINEERING
ENVIRONMENTS « ¢« « o o o o o o o o o o o o o

1. Develcpment Support Tasks

2. Integrated . « . . o .

3. Unifor® . ¢« ¢ ¢ ¢ o o o o o

4. Support a Solution Strategy

S. Adaptable . . . ¢« ¢ ¢ o o &«

6. PFunctionally Onique . . .

7. Interactive . . ¢« ¢« ¢« &+ o« o &

8. Recent Developments . « ¢« « «
C. A SOFTWARE FNGINEERING ENVIRONMENT
PROTCTYPES ¢« o ¢ « o o o o o o o o o o

1. Technical Components . « « « « « « « « « « 69 :
- 2. Support for Software Design .« « « « « o« . 72]
’ 3. Support for the Prototype Process . . - . T4
:;:' D‘ SUH!AR! [] L] L] [] L] L] [] * . * L J - - L] L] * - - L 76
VI. CASE EXAMPLES + o « « 2 o « o o o « o o s o o o o« 17
lh A. SYMMETIRY, EVOLUTION, SATISFICING, AND
- CCHMMUNICATION o o o o o o o o a s o o« o o« o« o o <« 17 w
:'.: B. LEABRNING . =« ¢ ¢ o o o o e ® ® o e ® o o e & 79
;; C. WICKED PRCELEMS, COMMUNICATIONS, AND THE i
- ORGANIZATIONAL CONTEXT ¢ o« ¢« o « « +» o =« « » = =« « 80]
v
ﬁ’ D. COMMUNICATION, LEARNING, AND EVOLUCTION 81
= Ee SUMMARY @ o« o o o o o o o o o o o « o o o« « « 82
- VII. CONCLUSIONS o o o o o o o o o o« o o o o « o « « « BU
i_ VIII. RECCMMENDATIONS POR FURTHER STUDY . . « « « - « « 86
- A. HANAGEHENI L] - [] L] - - - [] * - L] * * - - - - - 86

B. ACQUISITICN AND CONTRACT MANAGEMENT . « . . . 86

C. ORGANIZATICNAL CCNTEXT v« « o o « « = o o« o« » o« 87

D. CUALIT! - - . L] * - - - - . L] L] L] Ll - * [] - - 97
N BE. REPRESENTATION . . « o ¢ o o « s o« = =« s o« « » 88

LIST cf RIFERBNCES L] L] L] - - - - - [J - - [] [] L] - [[] - L] 89

- INITIAL DISTRIBUTION LIST 4 &« « o « o o « o o o o o o« =« « 99
“‘
¥
7
.
)

PANASIEIL A A R 40 SR AT It S i Bast Jints e Jate

LT -'_7""

LIST OF TABLES

I. Design Methodclogios . o« ¢« ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o o 31
II. Hypctheses Tasted in the Experiament
III. Results of the Experiment . .

- - - - - L L] - L - 3“

PN AP ST IR W SO W S s R

LIST OF FIGURES

-, 2.1

AMlexander's fesign Phases . . . « .
3.1 Kolb's Learning Cycle Model
3.2 A Censtructive Conflict Model for User

Invelvement .« o ¢ ¢ o o o o ¢ o o o o
3.3 1yrpical Life Cycle Representation . .
4.1 The Prototype Model . . ¢« « ¢ ¢ ¢ o &
4.2 Evoluticn of Prototypes . « ¢ « o o« &

39
45
52
63

..............

SOt Rt At et S S, TR A ACRR AT I AL PR i i Shin b Jibeey & “n Sutar S Wit N L ——" R —————m—— o — g oy
'y [S . . . - - v L - RS DR

{ I. INTBODUCTION

Current software engineering practices are based on a 1
;% developaent model which is 10 to 15 years old., This modsl
. is often referred to as the wata2rfall model. The waterfall
"f model <cshows the deavelopment of sof<ware as a s2ries of
- discrete steps [Ref. 1, 2, 3, 4, and 5].

‘ Experience indicates, however, that software development
r is nct as discrete as the model indicates, so the medsl has
] teen refined by adding loops between each c¢f the steps.
f' Furthermcre, as software maintenance has gained recoganiticn,
. there is increased pressure to refine the waterfall model +o

T TR

= show the added importance of maintenance in the software

- life-cycle. ;
f‘ The software engineering profession's concern abcut g
‘i scftwares maintenanca, which is mcre properly termed refine- j

- ment and enhancement, kas prompted several conjectures.
. Dodd [Ref. 20] has =suggested <that <he current cycls of
devalcp, iaplement, refine and enhance, implemert, refine
and enbance, implement, and so on is really cthe construction

ard refinement of a fprotctype sys*an.
. Several other authors have suggested <tha*t we should
. develcp software prototypes as an al+ernative to <the tradi-
b tional, or waterfall, aporoach ¢0 software development
(Ref. 68, 36, 62]. Their principal argument is tha+ <the
process cf software development is really iterative, slowuly
expanding toward a ccemgleted systam. Other reasons include
enhanced communicaticns between the usar and designer, fewer
. requirements problenms, quicker turnaround be*ween initial
N system need and initial system implamentation, o name a

few,

10

v

D.l
A T

o
’
4

The fprccess of develcping a software Dprototygpe has
g3

significart intuitive appeal for users and managse: they
can *ry a system cut before comaitting themselves to a
system which is either unsatisfactory or undelivered. Aside
from this agpeal and the benefits often cited, <there seenms
to be little discussicn about the principles underlying the
development of software prototypes.

This <thesis presents cne view of how the pr-ocess of
developing software rrototyges supports some basic elemerts
of general design theory and software design specifically.
Chapter II develops an integrated set of design elemexnts
bFased c¢n several puktlished models of the gen2ral design
process. Chapter III relates these design el=zments tc soft-
vare development by citing examples from the computing arnd
information science literature. The purpose is +o show that

software design is similar to other fields of design.?

Chapter IV introduces *ths software prctotype. The
process of devaloping software prototypes, <+heir roles as
sodels, ccunstruction strategies, and the principal uses of
rotctypes are descrited. The chapter concludes by shcwing
how prctotyres support the design elsments from Chkapters II
and III. Chapter V Ltriefly describes the essertial fea‘ures
cf scftware engineering envirormerts, especially <*hose
features which are needed for developing software proto-
types. Chapter VI rpresents fcur case examples which illus-
trate the process of developing a softwars prototype. These
cases were chosen because in each of them there was an
explicit decision to use prototypes. Chapters VII and VIII
present Conclusions and Recommendations for Purther S:tudy.

1To, raraphrase Gertrude St=in: Design is design is
design is design.

1

. o B v

...................

..............................

' D
LI I]
AR A

*s

{ II. MODBLS OF DESIGN METHODS

A. STRUCTURED MODELS OF DESIGH

The ideas about design and design methods have underqone
some significant changes in the last 20 years. The early
models rplaced their emphasis on the process of design.
These mcdels had a rational, discrete notion of design in
which the design prccess was thought to be a sequence of
_ w2ll~-defined, highly structured activities. Many theorists
Si applied tle ideas and principles of the scientific methed ¢o

the process. Alexander [(Ref. 6] was one of the earliest of
the design theorists +o carefully explain design. His three
most significant contributions wers:

1. Tte symmetry cf the design problem--that is, design
P has two symmetical parts, the form (the solutica to
the problem) and the context (the setting which
defines the prcblem) . " . adaptazion is & autual
- phencmenon referring to the context's adaptaticn to
BN the form as much as the form's adaptation to it's

ccentext ..."™ The design problem is an 2ffort to
achiave "fitness" between the form and i%'s context.
[Ref. 6]
2. TLke formal decomposition of a set of requirements
into successively smaller subunicts.
- 3. The importance of diagrams in design. A diagram, for
- Alexander, is "[a]ny pattern which, ty ‘taing
- atstracted frcm a raal si<uation, coaveys “he rhys-
ical influence of <c¢ertain demands or forces ..."
{2 (Bef. 62 p. 85]

12

D T S T N T

3

Alexander chose tc 2mphasize the process cf deccapos*ion
in his early work. This process was divided in*o <two
phases, analysis and synthesis.

In analysis, the designer, faced with a problem, derives
a mental picture--often vague and unsatisfactory--of +the
demands of the context, aad then d2composes that pic-ure
into sets (a mathematical picture). Synthesis begans by
developing diagrams (kased on the sets), using the diagrams
to form a design, and then deriving the form (see Pigqure
2.1 . Alexander also discussed evaluation (he calls it
“goodness of fit"). Goodness of £fit is determined by cne of
two criteria, experimental or non-experimental. Ths axpsri-
mental criterion is trial and error where "{+]he experiment
of putting a prototypre form in the context itself is the
r2al criterien of fit.® [Ref. 6: p. 21). The necn-
experimen+al critericn is "(a] compiete unitary descriptioxn
of the demands made ty the context ..." ([Ref. 6: p. 21].
Alexander telieves that: 1) trial and error is too expensive
and too slow and 2) there is no theory which can exrress
... a unitary description of the varied phenomena of 2
particular context." [Ref. 6: p. 20]. For these reascns
ke concentrates on the process of decomposition.?

Alexander's structured view was shared by many theorists
during the early 1960's. (Ref. 8, 7]. Archer (Ref. 7]
thought of design as a goal-directsd activi+y. The goals or
cbiectives cf th2 prctlem defire the properties required in
the sclution. The details cf the design are the designer's
decisicns about how tc implement those properties [Ref. 7:
p. 286].

2Alexander devctes an entire Appendix to *he
"Mathematical Treatment of Decomposztlon "

13

CONTEXT FORM

MENTAL
PICTURE

ACTUAL
WORLD

FORMAL

F3 PICTURE OF
MENTAL
PICTURE

Pigqure 2.1 Alexander's Design Phases.

14

......

- Lammumadir o g e 2ave D s S B Sh M L ol el S bt Jd b 4 Mot S et

Archer identifies three components of the design .

Frocess:
1. The advance through the project and through time; ;ﬂ
2. Tte ktranching cf the problem into its logical parts; .
and, F
3. A prcblem-solving process cyclically umoving through]
sukproblems (using a 30-step reiterative operational ;

mcdel).

Jcnes (Ref. 8] «called the thr2e stages in his view of
the design process divergence, transformation, and conver-
gence. He was quite convinced +that designers should think
cf these stages as serarate:

«esthere is little doubt that thair separation is prere-
gquisite to whatever changes of methodology are necessarcy
at each stage before tiey can be reiniedgfatad to form a
progaﬁs that werks well at the systems level. [Ref. 8:

B. WICKEL EROBLEMS

These early models ware of+en criticized. On2 cc-itique
sugges<zd that design problems are "wicksd problems" and ars
not, therefore, amenable t¢ structured analysis (and dscca-
resiticn). The t2rm "wicked prcblem'" refers +o a

e o o_» class of social system problems which are ill-
formulatzd, where the information_ is confusing, where
thege, are mang clients and decision-makeis with
conflicting valués and where the ramifications in <*he
whcle system are tﬁcroughly confusing. (Ref. 9]

Wicked proklems have the following proper+ies :

1. Wicked problems ae ill-formulated. They have ne¢
defiritive €formulation and any formulaticn will
ccrrespond tc the formulation of the solution, This
means that any time a formulation is made, additicnal

15

...................

L
.
.
] 2.
‘.1
.
\ 0
\‘-
b ‘:‘:
~a .
v
1
Py ':.
o
oy
e 3.
‘-'
4.
B S.
I;.
N'.
i
e
o
- 6.

questions can be asked and more information can be

Tegquested. This also means <that the informa:zion
needed to understand <+he problem is determined by
one's idea or plan ¢f a solution. In other wcrds,

whenever a wicked problem is formulated there must
already be a sclution ir mind.

Wicked problems have no stopping rule. Any time a
sclution is fcrmula ted, it could be improvad or
vorked on more. One can stop only because one has
run cut of rescurces, patience, etc. (An architect
cculd keep modifying and improving a design solution
fcrever--he stcps because ne has exhausted his fee,
because the tuilding has <o be £finally buils, or
because h2 has exhausted some other resource.)
Sclutions to wicked problems cannot be correct or
false. They can cnly be good or bad. (There is no
ccrrect or false building: there can only be a *“gocd"
building cr a *"bad" building.)

In solving wicked ©problems thers is no exhaustive
list of admissable oparaticns. Any conceivable plarn,
strategy or act is permissable in finding a sclution
and ncne can ke perscribed as mandatory.

For every wicked problem there is always mcre *han
cne pcssible explanation. The selection of an expla-
nation depends on the employed world-view; “he expla-
naticn also determines “he solution to the protlen.
(The high cost of cons%ruction of a buildiag may be
attribtuted to the "expensive" design, to the high
ccst of materials, to the wagaes demanded by unions,
o high interest rates and inflation, etc.)

Every wicked problem is a symptom of another "higher
level" problem. (If the maintenance of the residence
is "too expensive" tc¢ its inhabitants, this indicates
that there is a problem with “he inccme of its inhab-
itants.)

16

10.

No wicked protlem and no solution to it has a dafini-

tive test. In cther words, any time any tast is
"successfully" passed it is still possible +that *he
sclution will fail in some other respect. (If large

vindows are designed for a residence to provide the
desired views, the heating of the residerce nmay
become too exrensive.)

Each wicked prcblem is a "ona shot" opesration. There
is nc room for trial and error, and there is no
possibility fcr experimentation. (A house 1is
designed and built--there is no goinag back to the
beginning to redesign and rebuild it.)

Every wicked fproblem is unigque. No two problems azre
exactly alike and no soluticns or strategies leading
tc solutions can readily be copied for the nex+*
prcblea. (Even if two residences are designed for
tke same family, under the same geographical ccndi-
tions they will never be identical.)

The wicked ©problem sclver ahas nc right +<c¢ bs
wrcng—he is fully responsible for his action.

If design problems are considered as wicked problens,
they are certainly incompatible with the early gocdels of

design.

The sarly mcdels clearly separated the problem from

its solution. With wicked problems, one cannot "define the
problem"--they have no definitive formulation. If one
followed the procedures of the early modals of 3esign, one

should

found.

te akle to establish when a solution was clearly
Wicked rroblems, however, have no stopping rule.

Some cf tte propcnents of the 2arly models of design devised
testes for design solutions. Alexander argued that trial and

error shculd eaventually lead to "good fit"; wunfor+unately,
each time a solution is tried, the problem is also changed.

17

.............. T, e e s e S S D T T —r————

B C. ACCUOMULATED KNOWLEDGE MODELS OF DESIGHN

{ 1. Design is Argumentative

ﬁ; Other design models were proposed following <“he criti-

Ej cisms of the early, structured models of design. Rittel

2 (Ref. 13] views ¢the whole design process as segquential
ptoblem solving in which the <cycles form n=2tworks. An

essential part of this model is +the continuous feedback
between tie designer and the problems environment. Rit<el
2 calls this targumentation':

: o.e o_o the designer Eis] arguirng toward a solu+ion with
o himself and with cthel parties 1involved in the project.
- He builds a case leadirc to a_better understanding of
y what is_to be acccaplished. In its course, sclufion

principles are developed, evaluated in view of their

expected performance and decided upon. The parties
o commit themselves *t9o specific coursas of action "and to
v the risks involved in then. In this uaI, hetter formu-
- laticns of +h2 prcklem_ are being develcped simul<ane-
- ously with a clearer and clearer image of the soluticn.

If argumerts are imgzoved procedurally, <+hei- «conten+t may
improve and the products of the dasign--design
ld decisions--may also be expected to improve. ¥hile *argu-
ing', <the parties may gain new insights about *he issue,
€éxpand tteir world-visw, modify challenged positions, and

learn mores akout other world-views.
- 2. Eatseras in Lesign

Alexander iptroducz4 the concapt of Fic*oral
diagrams in designm in 1964 (BRef. 6]. Significantly,
Alexander believed tha* the design diagrams were produced by
n formal, rigorous apalysis, a design process founded c¢n math-
ematical decompositicn. Since then, Alexander and cthers
(Ref. 10] have concentrated on the diagrams (or Patterns)
Tather than the fprocess.

18

B Sl el o ofa

B ectnchosslnstinsins

Alexander's ratterns are2 aot a resalt of rigcercus
analysis. Rather, design is a process of acquirirg kncwl-
edge and then making decisions which reflect tkhat knowledg=.
The <crucial issue for Alexander is the availability of
knowledge. That is, ¢the design decision depends on the
accumulated knowledge of the designer. Patterns help to
provide ttke designer with the necessary knowledge to solve
the problen. The pattern forms the basis of coamunication
Eetween the designer and the client. A pattern--a diagram
of what the designer knows and believes important for the
Froblem--is designed and then passed <+o the «client. The
client either accepts or does not accept the patterr. In
either case, bcth the client and the designer gain new
knowledce: if <the rpattern is not accepted, the designer
proceeds to change tke design.

3. Design as Leazning

Bazjanac [Ref. 15] views the design process as
formulating the problem and proceeding with a s=arch for the
defianiticn 2£f the solution. He smphasizes that ¢he formula-
tion ¢f the problem is not final. The formulatior reflects
the understanding of the problem, based on the designer's
krowledge, 3t that tisze.

An¥ sclytion ..., is
definition of the Er
is_then tgi sSearc
solution whic KT . s 3
at that time, cnce the specific solition is defined it
is documented. . Documentation may start during_the defi-
nition ¢f the problem and continue sporadically during
the definition of <+he solution--jian _fact, al threé
phases may at <times take place simultaneously. The
ultimate purpose of the dccumentation is tc_comamunicate
the definitions of the problem and the solution; its
immediate purpose is to aid the designer in the defini-
tion cf the prcblep and the solution-=to helg.hlm detect
new aspects of ¢the problem and the solutior and <o
detect inconsistencies in his view. [(Ref. 15]

lready basically deteczmined b{_the
lem, "So the "search for scluticn"®
r the definition of +the specific
ts the knowledge tha2 designer has

oo

19

Buring the =search and redefinition, the designer
keeps learning more akout the problem and the soluticn. Ths
designer gains new insights which ultimately lead to a naw
view-- redefinition. The process (formulate ths prctlen,
search fer the definition of tke solution, dccument <he
specific solution) is repetitive. The designer continués to
re-define and document new forsulations until 1) the incre-
mental gain in knowledge becomes insignificant and cannot
charge the formulation enough to warrent redefini+ion, 2)
the incremental gain becomes too costly, ¢r 3) the designer
exhausts available resources (especially time).

4. LCesian is satisficing

As the designer and user 1learn amore akout the
problem ard as the sclution becomes clearer, more and mora
design decisions are negotiated [Ref. 13, 15]. Since *hese
design decisions are reached through compromise, they cannot
t2 called ortimal, in the sense of @management science ang
operations research.

Simcr (Ref. 4] has intrcduced the idea of satis-
ficing *c describe *hese kinds of negotiated decisiorms.

Ncrma“+ive economjcs has shown that exact solnticns to
the large optimization problems of the real worla are
simply Nhot within reach_ Qr sight. In the face of this
complexitx the real-world business £irm *urns *c fproce-
dureés tha* £ind gccd enough answers tc questions whgse
best answers are unknowableé. .es man is ... a satis-
ficer, a perscn whc accepts "good enough" alternatives,
act because he prefers less +0 more but because he has
nc choice. [Ref. 14: p. 3

20

T TTrT—— T ——————

1

D. DESIGN AS A TECHNOLOGICAL ACTIVITY

Cross and others (Ref. 16] have proposed a view of
design which requires the explicit acknowledgemert of the
organization's role in design.

'Technclogg' ose clearly denotes mocze than, Jjust hard-
vare, and involves, at the very leas<, _ccnszdegation of
the or anizational systemas wilthin wvhich machinery is

deszgne ¢ . cCommiscsioned, operated and paid ~fer.
'Technological® achievements, whether those of bullding
a rajer tiidge or uttzng a man on the moocn, are as muc

?Sgﬁnlzational feats as technical ones. Ref. 16: p.

These ccnsideraticns lead to their viaw that a "satis-
factory" definition c¢f technology has the following charac-
teristics:

1. Technology is criented towa-d practical tasks.

2. Technclogy relies on different kinds of organized
kncwledge, of which scientific knowledge is cnly ona.
Craft knowledge, design knowledge, and organizaticral
and managerial skill are others.

3. Technological activity takes place in an crganiza-
ticnal context. (Ref. 16: p. 198]

Cross and cthers devcte a great deal of space to
highlight the difference between knowing "what <tc do"
(scientific kaowledge) and knowing "how to do" (design and
craft kncwledge). Their main poiant cannot be ignored: <the
organizaticr plays as large a role in design as does the
individual.

B. DESIGN IS EVCLUTICHARY

The early mcdels of design were frequently criticized for
their linear, step-Lty-step view of design. Page {Ref. 11]

wvarned that the design process is not executed straight from
analyeis tc evaluaticr:

Pl s e s e et Taus Mttt s Bar b ATl IRt i A e g i ab Dee Jban SV Ste B an K J a

.in the majority c¢f practical design situatiorns, b

the time you "have prcduced this and £found out tha+ ar

made a synthesls, you realize you have forgotter ¢g
analgze something else here and® you have to " g¢ around
the Ccycle and rrodcece a nodified sggthesis, and so on.
In practice, ycu gc around several tinmes.

Bllinger stated that the iterative approach to desigr "...
is paricularly suited to novel projects of some complexity."
(Ref. 12: p. vi]

Smithies [Ref. 17] has suggestad that there are a nuater
of essential stages in design. The first stage, dssign
analysis, is the statement cf the problen, 2. The next
stage ccneists of finding cne or more tentative solutions,
1S. This sclution is then criticized, C. When the designer
criticizes the scluticn, he or she adei*ts that the problem
s-atepent vas inadequate. So, <he desigrer re-states the
problem and begins anew.

P1‘T51°C1'P2‘.. «=Pn.

Smithies attributes his views about design to Pcpper
[Ref. 18]. Popper telieves that <he procsss or activity of
understanding can be represented by a genaral scheme o€
fzoblem <sclving by cojecture and gcriticism. Popger's
scheme, adapted by Stithies, is this:

P1-TT-EE-P2.

F1 is +he initial prcblem statement; TT, the 'tentative
theory!, is the conjecture. EE, 'error elimination?', is the
critical examination of <%he conjecture. P2 is the nqew
Froblem sta+ement which emerges from the examination. It
leads tc ancther at+20pt, and so on [Ref. 18 : p. 164].
Smithies' design stages and Popper's problem-solving scheme
are very much 1like Folya's ([Ref. 19] methcd for solving
problems. Software designers shculd take nota: Pclya is 2
mathesatician, Popper is a philosopher, and Smithies is an

22

T SR ST S T

architect, yet 2sach approaches tha solution to a prcblem in
the same vay.

The progress oI the dJdesigner through these stages is
marked ty increased knowledge and shifting priorities.
Clearly that progress is not linear and should be called
evoluticnary.

P. SUNHARY

Several points about design have bDeen made in th

]

proceeding sections:

1. Design is symse+*rical and adaptive;

2. The interesting (i.e., large,complex) design prcblams
can ke considered as wicked problenms;

3. Ccmmunications with the end user are crucial and
derend to a large dagree on patterns which bridge the
communications barrier tetween designer ard end user;

4. Design is a learning process--each party brings a
different perspective to the problem (and the solu-
+icn!) and l=aves (or should leave) with an augmen*ed
perspective;

S. Design is satisficing;

6. Design takes fplace in an organizational context;

7. UDesign is evclutionary.

The separaticn of taese ©points should not be miscen-
strued. Each c¢cf these aspects 1s interrelated and to a
certain extent mutually dependent on one another. When wve

say that design is evclutionary, ve also imply that design
is symmetrical and adaptive. Whea we say that design is an
organizational activity, we also imply that thera will be

extensive ccmmunicaticn during design. Whenever we try to
understand tha problenm, 0 learn aor2 abcut our +*entative
solution, we are raising a problem of understanding, or
posing 2 higher level problen, which implies +hat design
proLlems are wicked problems.

23

1 Z0na Sas Bt Sintt It ot S i Rt IR -SRI Y -~ S e el Al SaE Mg gd

This interrelated set of design elements forms the tack-
drop for the remainder of t his work. The following chapter
presents e€vidence frcm the 1literature that each of <zhe
design elements described above is a factor in software

desigr.

24

Y I RV WS S B W e PE WP P TS0 R Sy PPN f——l S e A -

.-.-_-,v.’--rv-ﬂJ

|
-
l
«
4

|
o

Bk #) e B oam.

A

IIT. SOPTWARE DESIGN METHODS

A. SOFTWARE DESIGN IS SYMNETRICAL AND ADAPTIVE

Several instances in the literature point <o the
syemetry cf the software design problem. That is, the solu-
tion not only depends on the problen, but +he prcblen
depends cn the scluticn. Solu*tion and problem are nct sepa-
rate issues, rather they are intertwined, much 1like the
figure ard c¢round in a2 painting or picture. Each depends on
the cther. Unfortunately, most people associated with soft-
ware design do nct aprreciate this point. Peters points cut
that software designers complain bitterly that regquirements
are poorly defined while <customers and analysts often
complain that the design is not responsive to the prcblem or
problems as they see thenm. (Ref. 23 : p. 67]. Peters
wasn't tte first to recogrize this, though. Podolsky wrcte
2 humcrous article inpn 1977 [Ref. 24] where h=2 statses "Pzer's
Law":

peer's Law

Tte solution tc a prcblem changes the problenm.

Several cther authors (Ref. 25, 26, and 27] have also reccg-
nized that the problem definition *tends to evolve as the
designers try to bocnd the problem, or modify the reguire-
ments. McCracken and Jacksor [Ref. 27] have gone so far to
say that thkis dependence is analogous to the Heiserberg
Principle: Any system development activity inevitakly
changes *the envirorment out cof which the need for the system
arose.

25

I D Y D .

P N IAC AN A SO SR L A D M A A Y B Y T TR yow—w

Much effort is currently devo*t3ad to requirements Jdefini-
tion and yet inccmpleteness, ambiguity, and poor definiticnms
in requirements documents are often pointed *o as the fore-
most prcblems facing software designers today. The effor+
which is spent on completely specifying the user's require-
ments will gain nothing if software design is adaptive.

McCracken and Jackson believe that systems requirements
can rever be stated fully 4in advance. To assert otherwise
is to ignore the fact that the development process itself
changes the user's perceptions of vwvhat is possible,
increases insights into the applications environment, ard
cften <changes the environment itself {[Ref. 27: p. 31].
Peters says that although requirments may have been very
fixed at the beginning, +they tend tc change and evolve with
time. If for no other reason, the user's percepticn cf the
problem changes as dces the designer's perception of that
problem [Bef. 23: p. 70].

Change is inevitable during software desian, and yet
"planning fcr change®"™ has long bean given 1lip-servicz, at
best. Neumann believes that planning £for change is slowly
being reccgnized as an important end in itself--and ore that
usually cannot be achieved by retrofits into an inflexitle
design [Ref. 28].

B. DESIGN IS SATISPICING

Mcst cemputer system developers wili immediately argue
this point. Develogpers of military systems would argue the
longest and hardest. Why should the idea of satisficing be
so controversial? Parhaps the answer lies in *he past, when
sachine time was exgrensive and computer memory limited.
These ligitations do not exist at the same level today. In
fact, satisficing occurs all the time. Conn states that the
requirements for state-of-the-art systems are often scaled

26

dcwn tc respond “o the need to cut the overall expenss of
the project or to meet time lipitations (Ref. 26: p. 403].
Designers are, or should be, constantly aware of the trade-
cffs that are wmade in systeas development, especially <he
classic trade-off, cc¢st versus performarce.

Several authors fpoint out that a user should, in fact
must, sacrifice an cptimum design for a design which can
cope at a satisfactory level {Ref. 29, 30). John Munsun has
keen quoted as saying:

Users stst look at the economics involved in automation
as a scftvare-groductivity solyzion. If a user can tuy
a paazcll program that "is_almost what he needs for
$10,000 cr one that exactly fits his needs _for $1
aillion . he must lcok at the trad2-offs and reduce his
expectaticns. [Ref. 30 : p. 66]

Satisficing has to do with more than economics.
Lavrence Feters has <csaid that the trade-offs for exacution
efficiency and ease of change nust be evaluated and a
comprcmise made. (Ref. 30]. Lockatt emphasizes the role o€
user satisfaction when evaluating trade-cffs. For her, user
satisfaction is not based solely on tha2 functional capa-
bility of a system, but on useability, reliability, and
rerformancs as well, Oftern the user cannot have avery+thing
(for example, both performance and functional capapility) he
cr she wants in a systenm, The final product may be the
result of ccmproumise. Certain functional capabilitias pmay
te 2liminated to achieve specific performance jJoals or, on
the <c¢ther bhand, tle user may be willing to sacrifice
performance to obtain some functional capability [Ref. 31 :
p. 157].

Several other acthors emphasize the role of agreement,
concensus, and negotiation {Ref. 32, 39, 33). Thesa authcrs
contend that as system design prograsses, alt2rna-ives zre
proposed and evaluated, The exact definition of a systenm

27

.........

AN T Jat i e S P e it PRty M St et it iy et i A B Al it LA DAl T S ae Jtn S et~

2 P W W R N R PP . L P

4

’ . oo .
. J. [T TR T T

o PRI
. St .

-

may nct te as important as the concensus on the inexact
definition which is attained. An exawmple from Land serves
to illustrate the importance of satisficing in sof<wars
design:

e s.o o the designer has to be avare that building flex-
ibility into, syStews can _also ba expensive, béth in
terms Of design effort and ogeratlonal performance. The

des1gner is 1nvolved in a rade-off between the extra
develorment and operational costs, of designing a systenm
which " is adaptable and €lexible--a vVer enaral

systam--or of designing a verz.specific systen dedicated
t0 the needs existipg at the *ime of implementation, fu+
which may be incapatle of modification and may have tc
be rerlaced if requirements change. [Ref. 29 : p.

Satisficing may alsoc involve psychological t-ade-offs as
well as technical trade-offs. Madnick and Donovan rela=e an
instance wherz two pcssible algorithms could have been used.
The inefficient algcrithm was choszn because the dasigaer
could not s*and the suspense of waiting [Ref. 22: p. 491].

C. SCPTWARE DESIGN IS A WICKED PROBLEA

Hcrst Rittel has suggested =that design problems are
wicked problems ([Ref. 13, 9]. Thase problems ars ill-
formulated, have confusing information, have many clients
and decisior-makers with conflicting valuas, and have rapmi-
fications in the whole system which are thoroughly
confusing. Pe2ters and Tripp have suggested <hat software
design is a wicked prcblem. They believed that a comparison
of the attributes and problems associated with sof+ware
dasign and <+he characteristics of wicked problems make i*
apparent that software design is i+tself a wicked prcblen
[Ref. 37]. A review of the properties of wicked protlems
and their relation tc¢ software design shculd help +tc put
this no+icn in perspective.

28

PR e gt Al Sl e A A S Ahds e Ml Miad ARt Madt Mt and il S et st el Iand e Jusdh Jhe & Juntl sesth e 4

Nicked fzoblsms bhav

io

ng definitive formulazion. Ary «
time a forrulation is made, additional questions can be
asked and mcre information can be requested. Our inabiliey
to define =system requirements completely and unambiguously

is a symptom of this problen. Current efforts in software

develcpment seem to be aimed at the symptom zather than the

Froblem. h
Several authcrs raise the possibility that a complete

set ¢f requirements is impossible, <that a s*tatza-cf-<the-ars :

system is almost by definition cns f£or which there remains
some degree of uncertainty at the +time raquiremen*ts are
preparsd. Under these conditions, it is hard to Imagine a
set of "ccmplete" requirements, since +the kncwledge cf the
eventual system at that point can only b2 iIncomplete
(Ref. 26 : p. 403].

Sicked problems hav2 no stopping rule. Ary *time a solu-
tion is formulated, i* can be improved or worked on more.
Che stocrs only because one has fup out of resouces,
patiencs, cr somsthing ¢lse. Few would a-gu2 tha% therz ac:
clear stopping rules for software dJesign. (Else why are
there ianumerable examples of cost and schedule overruns?

They can only be gocd or bad. This notion can ke quite
controversial among computer scientists. Granted, a
computer system wmust work properly, especially in 1life-

critical cr life-threatening circumstances (hospital squip-
ment or nuclear reacters, for example). Bu* ;work properly"
has different meanings to different people, or groups of
people, just as do "ccrrect" or "true".3 *

3Mortiper J. Adler discusses the idea of "«zuth", an
idea we judge b;, in géx Grz2at Ideas, Macmillar Publishing
Co., Inc., New Ycrk, 1987Z.

29

Perhags "gocd" and "bad" are poor choices as well, y=*

1
!
1
i
i

most of us readily acknowledge the differences when
presented with "gocd or bad, for whom?" The distinction
could be thought of in ¢terms of 'technical success' and
'psycholcgical success'. Technical success is the degree to
which the actual performance of the system ma*ches its spec-
ificaticn, while psychological success isgthe degree to

N whick the end user has confidence in th* final system

= (Ref. 36].

{1 Ancther distinction can be made from the observer's
point of view 0f a system: a systea exists and is defiped

by tte perscn(s) observing it. It is as acceptable, perthaps
even laudable, as the observer perceives it to be. If a
systes wcrks in the eyes of those who use it, <then to thcse
users that system is a good one. Conversely, if a system is
cbserved as not working by those same users, then it is not
good regardless of any cther attzibute it may lave,

(Ref. 33].

In scivipng wicked problems thers is nQ 2Xheustive iist
of admissable operaticns. Any conceivable plan, stratagy,
or act is permissable in finding a solution aad none can be

prescribed as mandatory. Anyone in +the profession car see
that this certainly applies to software desigr (grarnted,
3, there are at present a finite number of "design me*hcdolo-
1? gies", yet =each year this —rpumber contirues <to inczease).
The literatur2 is replete with references to design ame*hcd-
clogies: cb ject-oriented design, jata-oriented desiga,
design based on finite-state wmachines, and so on.

See Table I for a large, and certainly incomplete, 1list of
design methcdologies.

Not only are we faced with aany alternatives fcr a
design "methcdolcgy", but we also are facad with ianumeratle
- altarnatives fcr solving the subproblems in +he particula:

design case a+ hand. There may be more than one way in

- ' 30

..

phlneCiine T Jaacintjhare Sute St Shus Sat S Sait st s dun nd Sih S et o Satt Saie e dst S St dhndt_ou ion Snu et Pra— ___.‘._;~Y‘1
ST -t - T et R e T . . . N

TABLE I : 3
Cesign Methcdologies ’

Deacnic Full Nams of Mathodology

Active and Passive Compcneant Modelling
Data Criented Design .
Batg Structured SyStems Analysis and
esign
DataQStructured iystens Development
Evolutionar{ Design Methodology
Gradval Evolution of Informatidn Systenms
Higher Order Software . L.
FSD-SEP Adagtatlon of IBM Federal Systems Division
Softvare Engineering Practices, .
ggggrgatzon Engineefing Specification

c
Information Systems Work and Analysis
cf Changes
Jackson System Developmen:t
Nijssen's Information Analysis Method
Stfuctured Analysis & Design Technique
System ARchitect's Apprentice
System Developer , .
Structured Analysis and Structured Design
Systes Development Methodology
Software Engineeri g Proceduf2s Notebock
Softvare Requirements Engineering Methc-

o P\
ouno
O
m
.. W

tl(ngtl(h moets

tn
N x
¥

e lel le BN

2

nuunnunzt, H H HIOND U x
IS - - SRR

VPO OIS 1 M DO O
2z U »aAx

iz)

dolog¥ . .

s STRuctured Analysis, 0951gn and Implemen-
taticn of Information Systems
User Software Engineeriing

wn
3
o
b
o
8l

n

[~
(7]
(¢]

hanee o

vhich a target systea develcpment process can proceed simfply
btecause there are alternatie approaches available at +he
+ia3e¢ the requirements ar2 written. A decision between <these
alt2:patives may not be possible (Ref. 26 : p. 403].

Ecr every vjcked problem thezs is always mores than ope
possikle explapation. The selection of an expianation
depends cn the perspective, or world-view, used. The expla-
naticn alsc determines <the solution to the problem. (For
exaaple, the high cost of scftware is often attributed <o

labor-intensive design and programming; pocor requirenments
definition is often tlamed for software "failures".)

31

e

P

D 4

e ——" ’ T D TP ————

e a® femoaoa A

D

Nc wicked prcblem and no solution to it has a defini:iy

test. In cther words, any time any test is "successfully"
passed it is still possible that the solution will fail in

=y

some octher respect. This characteristic of wicked prcblems
is tied very closely +to *the idea of satisficing. 1f

|

computer systems are tuilt to be flexible, their design must
ke generalized. The aspect of flexibility is gained at the
expense of efficiency (rot *hat this is bad!). So, the
system "passes" the test for flexibility but is very ineffi-
cient. 1

Each wicked rroblem is a "ope shot" operation. There is "
no roca for trial and ercor, and there is no possibili+y for .
experimentation. Many large-scale computer systems have

this characteristic. 1In fact, software development is some-

" T

times compared +o building a ridge--once it is built there
is nc gcing back to the beginning to redesign and -ebkuild it
for any rumter of reasons).

Evsry wicked prcklem is unigue. No two proklems are
exactly alike and no “wo scluzions or strategies leading to
solu%icn can readily be copied <£or “he next problen. This
characteristic is vary evident in sof‘ware design. Military
systems, £for exaapla, are certainly unique. Commercial or
industrial problems are no 1less unique. Each organization
has a unique structure, set of goals and objectives, =setr of
interaczticns with the envirconment, cast of people, and set
of needs.*

Ibe wicked rroblem so
he/she is fully zespcpsi
been a grcwing skepticism among users regariing the 2bili-

-

ver has no right to be wromg --

for his/her acticn. There has

o

b
b

ties ¢f scftware designers. Users have every reason <9
believe that +*+he software designsar "knows" the Jeb.

sNote <that what _is beipn
groblem, not a subprcklem. Th
and softwvare comporen*s should
lems, £cr cktvious reasons.

g discussed is <+he overall
§ questions about reuseability
bé direc+tad ONLY *0 subgrob=-

32

P Y - “ o

Aol alintt S Tk Tl Bad it N S AN I M i] "~ At e S ¢ . ey A T — - Y e——

Clearly, ttite designer must be aware of many of the factors

which could affect the design. The designer must also be

aware cf the effects cf design decisionms. Allowances will

and can be made for unusual unforeseen difficulties. But to

- hide behind the "This system meets the specificatioans you

- approved and sigred" statement is going (and has gomne) too
far.

D. COMMUNICATIONS BETWEEN THE DESIGNER AND THE END USER

Perhaps the single, most widely noted problem area in
software design is +he problem of communication between the
user and the designer. The recent literature emphasizes the
;f need for extensive ccmmunications [Ref. 25, 29, 30, 35, 39,
and 40]. The @most common reason given for the prcblem is
that users and designers speak with Jdifferent vocabularies
and find i* difficul+ to completely undecstand each cther.

Much of the literature which cites the need fcr closer
compunicaticn is based on empirical and ancedotal repcrts.
King and Rodrigquzz [Ref. 41], howevar, repor* an assessmen*
of participation (and communication) in system development
in an experimen“al ccntext. The 2axperiment tested £cur
specific hypotheses (see Table 1II) about participative
design which were sta*ed in null form.S

The experimental results (see table III) indicate that
rarticipative design makes a difference, especially when
viewing the "wor+h of the systenm".

. .3This «cniy means ,that the t'claim', i.
wisdca" in systems design, was set ug as the
the hypcthesis, in accord with raditio
testing.

. "accepted
a Znative %o
n&1 T ayEothe€sis

33

TABLE II
Hypotheses Tested in the Bxperiment

H1: Farticipation in the development of the system has
no effect on the user's perception of th2 worth cf the
systes.

H2: Earticipation in the davelopment of the system bhas
no effect on the amount of use which is made of +he

sgetem whken the user is faced with strategic 1ssues for
which the system was designzd to provide Support.

H3: _The substantive inputs provided by pac-ticipants in
the design process will not be reflacted in ¢heir usage
cf the systen.

H4: Tte decision Eerformance of participants in the
design process will not be diffarent from that

of nén-participants.

TABLE III
Results of the Experiment

H1; The null hypothesis is rejectad. . .
This result indicates that wmanagers who are involved in
the develcpment eiffort tend to perceive the system to
be more worthwhile than managers who _are pmerely given a
pre-designed system to which they had no input.

H2: _Cannct regect the null hypothesis.

conclude that the use of the sSystem in *erms of number
of queries is not s;qn1f1captl§ different for design
participants and ncn=participaiits.

H3: The null hygcthesis vas rejectead.)

i+ ipdicates th the substaptive inputs_provided by the
participant group in the design apd development phase
0f the information system are reflected in :their

actual use of the system.

H4: Cannot reject the null hypothesis.

As King and Fodriquez put it, the

. experiment rrovides some support for "ga'**cz ra-
t*ve deelgn theory": (a) Th® Inputs provided partic-
gan*s aprear *o have been made use of in the*; use of
t € syetem, and (k) some positive attitudipal impact--
terms of systesms "worth"--seems to be achieved
thrcugh participaticn. ([Ref.]

e
n

The experiment seems to confirm some deeply held cornvic-
tions that participation in, and responsibility for, design
implementaticn can result in elimination or reduction of
communicaticn problems [Ref. 29: p. 65].

Thers may bLe scme reason to Dpelisve that +the real
problsm with communication is not whether i+ +akes rlace but
whether tle media of comaunication is apprcpriates. The fact
that the designer has produced a comprehensive specification
and that the wuser has 'signed off' <che specification aftsr
Jue study, is not a guarantee <+hat the designer has under-
stood the user's needs, or the user the designer's specifi-
cation [Hef. 29 : p. 65]. Stucki has suggestad +tha+t charts,
graphics, <c¢olor pictures, and other aids should be uszd to
enhance communications between users and designers: verbal
descripticns alcne are just as inadeguate for describing
softvware as they are for an architect buildirg a hcuse.
{(Ref. 30]. So, althcugh communications mey be a significant
problem, its form may be equally as important.

E. SOPTIWNARE DESIGN IS LEARNING

Sof-ware design is le=arming, Jjust ask any experienced

rogram nanager. They want someone wi*th design experience
P

Aiom: dstem &

.
o

to head the design team [Ref. 46]. Without explicitly
ackncwledging it, <*these managers place value in the experi-
ence Jlearned from previous work. This "lsarning from
doing" also takes place during the design of a system:

The reason for the discovery aspects of software design
is the_ designer's learning curve. As _the system 1is
studied, andalyzed, _,and a design_ formulated, certain
features are reccgnzzed as needing attention while
others are overlocked. . As it begomes 3pgarent which
features are lacking, priorities shift. [Ref. 37

If we accept that learning is an 2lz2msent of design, jus+
how important is learning to design? In an experiment,
Alavi and Henderson [(Ref. 55] evaluated two strategies for
systens devalcpment: evolutionary and traditioral. By
their definition, the evolutionary strategy emphasized the
role of individual learning. They reported that the find-
ings suppcrt the hypcthesis that an evolutionary Zaplementa-
tion strategy is more effective than a “raditional strategy
[{Ref. 55].

They *ry to explain their findings this way:

3 model which cffers an explanation for the findings is
Koltk's experimental learning model [see Figure -1].
Kolk suggests tha* for a learner to be effective he/she
must havé the ability to engage in four types of activi-
ties: (1) invclverxent in néw, concrete expariences, (2

Observaticn and teflactlcn_of these experiences, (3

creation cf ccncer*s that integrate these observaticns
1ntg +lteories, and (4) usage 6f these theoriss t¢ maks
decisicrs and solve problems. . . . The evoiutiocnary
strategy maps directly withk a starting point at concreté
axperiéhces. In contrast, the traditional approach
begqn with the development of a tbeorg. « « « An expla-
nation cf *he findings may_rest in the support *hat the
fgo%utgg%ary strategqy had for the 1learning [process.

ef.

This model has some important implications fcr soft-
ware design. For example, the perspective or world-view
that the dJdesigners (ard users) bring to a project beccnme
important (after all, we are starting from <concrste

36

CONCRETE
EXPERIENCES

—

TESTING & OBSERVATION
INTERNALIZING & REFLECTION

INTEGRATION &
GENERALIZATION
VIA THEORY

Figure 3.1 Kolb's Learning Cycle Model.

experiences). Greenspan and others believe that the abilis

to efficiently design appropriate computer systems and
enable them to0 2volve over *heir 1l1lifstime depends c¢n the
extent tc +which real world knowiedge can be captured
(Ref. 43). Wasserman [Ref. 35)] takes the though+ further by
suggesting that memters of +the different groups ccncerned
with design perceive the function of an inferma%ion systenm
differently. Misunderstandings of objectives <can and do

occur, many times leading tc project failure.

37

............................

Land [Ref. 29) also states that there ara diffarent
ideologies and rerspectives among the different interests
involved in a systess study. Land suggests that mahagers
meet this challenge by setting up a design team which
con“ains representatives of all the aajor interest grcups,
making i+t possible for the different ideologies and ps:rspec-
tives of the participants to be made a3xplicit, and for the
diffarent members of the group to learn from 2ach other

[7]]

different viewooints (Ref. 29].

Hecw w@might the rfarticipation of wusers in +the systaa
design anhance or prcmote learning and real-world kncwlsz=dge?
Robsy [Ref. 42] conducted an experiment =hat explored a
model of constructive conflict ia the MIS davelcpment
Erocess. His mcdel (presented in Pigure 3.2) is descrited
here:

User Eart lgat;on should lead to conflicts, which
shculd EEE “satisfactorily cCesol .. However,
conflict and 1ts resolution are mdT3 IiKaly to occur
whan users can eaxercise *heir iafluence in *he devel $P-
mert pICCsSS. Ccnflicet i+s=21% 1035 no+t 1iead to i3
resolution; cather the increase in conflict makes reolu-
ticn more fflcult. It is only through participation
and influence that conflict can b2 successfully resolved
in this mcdel. ([Ref.]

There is other research which supports Rotey's
"constructive conflice". Boland (BRef. 54] compared two
Aifferent processes of interaction in system design:

1. traditional--the designer <conducts a traditional
interview of +the user
2. alterrative--+the designer and user share ideas,
present wutual suggestions, and critique +their
suggestions.
Bis results are significant:
1. The alternative prccess produced higher quality

designs with important isplementation advan+tages.

I - 0N AR

38

LRI T TS S AU S St 4 G Al e AU L ot e faee e Bern St D S

é PARTICIPATION

; INFLUENCE

zi Pigure 3.2 A Constructive Conflict Model for User Involvement.
:% 2. The +two prccesses produced designs which used

different organizaticnal coatrol strategies.

3. Different prccesses may help +o define different
problems and *hereby produce Jdiffereat, but squally
rational, solu+tions. [Ref. 54]

Boland likens the prcklem sclving process to a dance duriag
vhich tlke designer punctuates his interaction with the user

39

(haaal A ataisu)
P .

By ™ .
N
. . :

.....
.....

......

M N s N TR TN T TR Y e g L p e eRT———m—w"'

in a series of teaching, suggesting, and c¢ritiguing.e
Boland asks us %o accept the notion of 1learring and the
importance c¢f real wcrld knowledge:

Let us accept that _the viewpoint and implicit models
held ty designers will color their collection and inter-
retaticn cf data about the needs of <he organizatior
hey are designing for. This suudg suggosts that under-
stapding how tha viewpoint buéx s coherent design
statement re ulres an understandiz how the designér
interacts and exh anges lnformat‘on thh nis client. “The
interaction protoccls may then be seen as medlaulng the
process c¢f coample<+ing he designer's Wooint of Vview"
(creating *he desigrn s-atement). [Ref. 5&4: p.

Rcbsy's experiment 1lends support to Boland's findings:
*It appears that participation does lead to perceived influ-
ence in . . . system development" [Ref. 42]. Robey's find-
ings suggest <that iafluence is used constructively +to
resolve conflict and that users learn how +o exert influ-
ence towards conflict resolution as weli as conflict genera-
tion as the development process proceeds [Ref. 42 : p. 82].

As we have seern, *here is support tha+ learrnirng, argu-
mentaticn, and a designer's world-visw are impcrtant
€lements in software design.

F. SCFTWARE DESIGN HAS AN ORGANIZATIONAL CONTEXT

At first glance, the casual readar is apt to say "You
are stating the obvious." Yet muck of the ~current work ia
software design igncres the obvious. Land provides scme
evidence for this:

1. Users are uncertain about *+he affect the final systenm
will have on their individual <rocles in the crganiza-
ticn and cn them persomnally.

eCcapare Boland's "dance'" and Robex “constructive
conflict® fcr software design to Rittel's Marqumentation" in
design (Chapter II).

40

T rTr—y

PP T

LA S i vl Saad] .!fi'*--l..-ohr-‘..\.~fv—7..1'.“.-2"_.r"~'vr‘lwv~r-*v—T

2. The cbservaticn that the wuser operates within fcrmal
systems and that the formal procedure cf the existiag

systems have Leen overtaken by less formal (but cfiern
pcre effective) unauthorized procedurss.

3. The fact that those who are involved in the analysis
prccess--DP specialists and users-—-are often no+
aware of strategic decisioas made by senior manage-
ment which cculd have an importact bearing on +¢he
wcrkability of +the systea.

4. New systems almost certainly 4include innovatiors;
users and analyst/designers cannot predict managers'
responses to innovations. Conjectures about peocrle's
behavior are no substitute for knowledge, and in
innovation, such knowlsdge is 1nct ordinarily avail-
aktle. ([Ref. 29: p. 64)

Althcugh Land cited these points as reasons for communi-
cations ©proklems, they can equally serve as indictments
against current software design. That is, orgapizatioral
aspects c¢f scftware design ace of+2n Igncro=d.

Wasserman points out that orgaaizations and ccaputing
anvizcnments are highly dynaamic and tha+ information systeams
must ke designed fcr a changing organizaticn [Ref. 35].
Chafin states <that as ccmputrer systems become aore deeply
involved 3ir the operations of organizaticns, they have
larger sccial effects on these organiza+icas. A new
computsr system may change the organization structure, the

povwer structure, or *he overall infiormation flow structure
in an organizaticn [Bef. 40].

v Ta te T T MM TN TR TR T AT T W WV, W NN NN e YT T T T e Bl adiie ialrhia A A A At iR |

......................

PRI SRS Y R

Zmud and Cox reccgnized the organizational asgpects of
softwvare design in their discussion of a “change" approachk
to design and implementation:

The change apgroach to MIS, implementation strives to
create an environment in which change will _be accepted
through the active involvement of affected <crganiza-
tional mesbers an intensive educational prograam, ang,
post im ortanti; the assigning _of project ™ resgonsi-
bility to the N § user. additionall « @ Sense of pmutual
trust and comamittment must develop between participants
so that a free exchange of beliefs and opinions 1is
possitle. [Ref. 53 : p. 37]

el fcietn b bk odo I i

AR AL LD L.

Zmud and Cox make no reference to wicked problems, yet
their change process is reccmmended when (1) <*he organiza-

tional activity involved is ill-defined, (2) the MIS must
interface with other organizatioral systems, and (3)
substan+ial organizational <change is expected. Ccmpare

these characteristics to Horst Rittel's <characteristics of
wicked protlems (Chapter II).
Althcugh there are several articles and references to

organizatioral aspects of sofrware design, two authors szand
cut. Kling and Scacchi have writtan two extansive articles,
[Ref. 59 and 60], which stress the reed for an awareness of
and attenticn to organizaticnal and social aspects of systenm
design. Their latest work (Ref. 60])], develops a family of
models (called web mcdels) which they believe helps tc ™make
tet+ter predictions of the outcomes of using socially complex
computing developments". These mcdels are coatrasted to
'discrete-entity'-~-rational and traditional--models. Their
vork attempts to abstract a set of rincigles,
characteristic of wek models, from analyses published in the
literature.

42

......................

Kling and Scacchi stress the importance of perspective
: in the "social analyses of ccamputing®. They identify six
(l perspectives, four of which predominate:)
- 1. Formal-rational
. 2. Structural
= 3. Interactionist

4. Pclitical
Their pcint in discussing these perspectives is that each
"casts a differant light" on the significant aspects of the

design problem.?
{ . Further discussicn of the work of Klipg arnd Scacchi is
teyond tte scope of this work. The point to be made of
their wvwork is that software design is conducted ia an orga-
niza+tional framework:

In contrast tc the discrete-entity modals, which gain
simplicity by lgnorlng the social context of compuj 1ng
developments, Web wmdédels make explicit <+he salient
conections between a focal tec hnolog apd i*s sccial ar
political contexts. [Ref. 60 : i

G SCFTWARE DESIGN IS EVOLUTIONARY

Much ¢£ the current practice {n software desiga 1is
constrained by a model populacly termad -he ‘'watarfall’

*l. !‘ O' l‘ l. ;. l_'.

rodel. Tcx Gillt aptly sums up *he attizud2s of anst sof+-

h L A A,

ware professionals:

f; It _seams that they recog ize, as ;et, only one * of
o life cycle. In §art1c aem to b sgeak of
- a reve utlonary life cycle (lix the bire u;an)
= such as

as cgpcee to’a @mcre eéevclutiorary life cycla

the develcpment of the human species). (Ref. 368

- 7K1: n and Scacchi present_ an extensive jscussica ¢of
= the =cc;a ggnam1cs cf system design in Ref. 3
: discussicn based ¢n the four pérspectlvas efitijoned as
well as two octhers: bhuman relations and class polztzcs.

43

Cther authors alsc complain about the current life cycle
model. Brittan is ccncerned that the serial definition of
the project development cycle, known as the linear strategy,
embodies cne fundamental concept: that an activity follcws
logically from its predecessor so that each stage is
complete ktefcre the next begins [Ref. 36]. McCracken and
Jackscn seem to be the most critical of the current life
cycle model. They Lelieve that any form cf life-cycle is a
project management structure imposad on system develcpment.
Furthermcre, they pfpcint out +that the <current life cycle
modal is either a very such simplified mcdel (which is
werthless) or unrealistic [Ref. 27]. Podolsky [Ref. 24]
argques that the current mecdel (which he terms ‘'Classic
Development') is "very, very good"™ when it is succassful,
but that when it fails, "it*s horridv. He attributes the
success and failure cf Classic Development *o the <type of
problem which will be solved: classic development is gocd
for well-defined, highly structured, change-resistaat grcb-
lems; it fails when presented with ar ill-defined rrctlem,
changing rarticipants, aad changing requiremen<s.
Zvegintzov (Ref. 57] has twc objections to “he current life
' cycle mcdel. First, it does no* port-ay a systeams life,
only the creation, develcpment, or youth of a systen. I+
do2s no+* include adulthood and is vague about ocperation and
maintenance. S=cond, it is not a cycle, it portrays a
linear path and does not, as a cycle nmust, retura tc its
teginning [Ref. 57]. Gladden aven goss so far to say that
the =software life «cycle wmay be narmful to the softwara
professicn. See Pigure 3.3 for Gladdea's representaticn.

These argquments, and others, begin tc raise a question
about <the validity of the 1linear strazegy. The linear
strategy places a great deal of reliance on the studies and
efforts made in the earlier ‘'stages' of software develop-
ment. Yet this strategy ignores the fundamental aspecis of

44

SRR SR AN LA it it iert Sut At S i SO I SR AP A S S Tr— R e S B i M I . p—

REQUIREMENTS
-
DESIGN
<
IMPLEMENTATION
) Z
TEST
(REPEAT)
]
Pigure 3.3 Typical Life Cycle Representation.

45

—

RS
.

M)
ISR |

PR -

D s
Yoo
PR

design

described in cChapter 1II. Bri«tan places =iais

predicament in perspective:

In a ma o:itg,cf cases, particularly when_<the organiza-
i

tien

résrensible, for designing an implementifq <+hs

system has experience of sipilar systems and whén the

USErS

are_ clear about what taey want, the lineacr

strategy is pefectly satisfactory and produces_ gcod

regults. Too often

a project " starts on the linear

stfategy kut the inifial regqairement is vague, over-
ambiticus or fails to meet the real need: in fact the
requirement is still fluiad. The project then prcceeds

in a
fges.

cseries of shert locps as the réquirsment solidi-
« « o [Bef. 36]

Now it becomes clear why Gladden's representation in Figrctre

3.3 appears as it does. To make up for the reality of soft-

ware

design, the practice is to use a ‘'loopy 1linear!

strategye. That is, to proceed in a series of relatively
haphazard and shcrt-term locps. Again from Brittan:

Some =
excessive loopiness is a feeling of _antipa

the

particularly iZ ,
we/they syndrcme) ;the syS<tanm esigners will

about

loops are inevitable. One of <the sxgptg
different grcugs associated, with ;né ypr
£ “they are geographically disperse

Q
"
=
=1
2 a
§

s

UserS never Rnowing what +hey want and usetfs will

be anncyed by +the arparent Jlack of good project manage-
ment as +the System c¢ver-uns its buddet in Loth time and

cost.

[Ref. 36]

Brittan gives other reasons why the linear strategy is pocr:

1.

when analysts refine the requirements of a systenm,
+heir investigaticns and studiss frequeantly thrcw up
Froblems which were not suspect2d at the outset.

+he linear strategy can oniy be based oa studies and
investigations made Lty analysts; users, who determine
+te success of the systenm, are not usually adept at
the conjecture and ex:trapolation needed to urnderstand
thcse studies.

Land (Ref. 29), EBrooks [Ref. 46)], Podolsky (Ref. 24], Zavz
(Ref. 32], and lehman [Ref. 47)], to name & few, bhave all
argued that a system will require substantial, cortinuing

46

b
mn
13
2

changes after the client begins to use the systen. He

ct
tr
1
n

tc relegate this pktenomenon to ‘'Maintenance‘. But
isn't encugh. Consider this ccmment by Lard:)

The ccnventional mcdel of the Itel5 life cyclz _assumes
that _an analysis and feasibility s;afe preécedes _the
detailed design stagqe and that tais will beé followed by
a specificiaticn and agreement of the specificaticn for
+he systen, At that point the design Of the system is
often” frozen. Por _a typical inforfmation system_ the
stages grecedln the design freeze take between 20% and
35%"of the tot time required for the develoment cf the
s¥sten. Pcr between 65% and 80% of tihis time the design
of the system is not_to be modified, even <thcugh *he
"vorld" is changing all ¢he time, In practice, €yen a
frczen design gé6ts modified if the system is seen :c¢ be
beccming ifrelevant <o real requiréments. Purther,
inccnsistencies in design are iscovered during, the
construction Ehase as a result of "systems quefies".
{Ref. 29 : p. 68]

Scftware design, nc matter how hard we t-y otherwise, is
simaply nct linear. The literature clearly supperts an
evolutionary strategy, yet our practice has not recognized
this.

H. SUMBARY

The preceeding discussicn shows that there is suppor:t in
the literature for reassessing our view of software design.
Software design is symmetrical, but we currently do little
to recognize that symmetry. Software design is satisficiag,
yet there is constant 2mphasis on optimizaticn, often for
its «c¢wn sake and forsaking approaches tha“« enhance the
us@ability cr quali<y of the software. Pechaps, withcur
conscicusly noting i%t, we are also concerned with the "test"
design and dooming the project to mediocri+ty, a% best, and
perhagps catastrothe.

Software design, especially for large-scals systems, is
certainly a "vicked grobiem." All the evidence is there; i=
cnly remains to ackncwledge +hat fact. de are well awvars
that comaunications be*tween the designer and user are

47

i i i I Ve Ve TR WA W WL W, Ty W VWY WL, T
R -~ s T T T T T S Y e T T R T e T T e T T e T e T T e T e T e T e T

all-ispcrtant. Yet, we have not really given muchk “hcugh+*
to the medium of exchange. Software design 1is a leacning
experience. Designers learn that projects are more dbmplex
than exfpected and ©vuvsers learn never *“o *rust desigrers.
This may te a harsh critique, but the point is well illus-
trated: all par+ties gain something from the experience of
softvare design. Let us recognize the worth cf <his.

Tke organizational context of software design has long
bzen ignecred, particularly in military svstems. W2 nust not
forget that the computers are to h2lp the psople ip a systenm
to pexrfcrm well, not to control the people as a part of the
systan. Fipally, e are beginning to r2cogaize that soft-
ware design is evoluticnary. There really is no "snd" <o a
project, simply a restatement of the goals origirally iden-
tified.

Although seven characteristics have been stated and
discussed, their interdependencies are obvious. Norna of
these characteristics is mutually exclusive of another.
Rathexr, eack builds cn the cther. Al“houqgh “hersz are Znnum-
erable implications in that statement, the remainder of this
work will examine one approach which may help us to consider
the seven characteristics of design in software design.

48

VN T N g R ——

A N AR M
N R

- Dt

4 3
'-"fl <

‘1

U 2]
A e el
.

LA]

T T W T N T T T R T AT T e e e e el Rt A A i S aared Dol sl et S B Ao sl fiems e v . B T———w

IV. THE SOFTWABE PROTOTYPE

A. INTBCLCUCTION

For the last 35 years, systems software develorment has
teen kased cn the sc-called 'systam development cycle.' As
shown in the 1last chapter, there are several arguments
against such a cycle. Perhaps the most <talling argument
lies in cur process controls. Several authors [Ref. 61,
62) have pointed out that in response to uncertainty and
increased ccmplexity, there is a tendency to define and
structure (and increase!) mapagement centrols.
Correspendingly, precise requirements definitions have been
emphasized. Berrisfordi and Wetherbe (Ref. 61] telieve that
there is a major conceptual flaw in “he traditional view of
systems development. This is that system Jesign ascsuzes
that managemen* knows what information is reeded ard i* is
difficult, 1if nct wunrealis+ic, t0 ask nmanagers to define
their infcrmation requirements on pavper.

Hcw dc scftware designers cope with *his problem? Rich
and Waters ([Ref. 63] have explored this Juestior and
theorize that scftware designers cope with complex design
problems by using several mental tools, one of which
involves simplifying assumptions. The use of simplifying
assumpticns is both necessary and commonly used when
constructing large ard complex systems:

Given a ccgglex programming problem, expert programmers
tyg1ca11 oose simplifying assumptions which, thougk
false, llow them to0 artivé rapidly at a program whicéh
addresses the important features or +he problem withcgut
being distracted by all of its details. he s;mgllfylnq
assusptions iEe +hen incremeptally roetracted with cerre-=
sponding modificaticns to the initial program. Of+en
the wmain gJquestions can _be answerad usiag only the
initial precgram. [Ref. 63 : p. 150]

4s

Cladh il el 2t ey 2

Betd o dodendadiadnl ol ciine Ao,

- This use of simplifying assumptions in software design
= is very amuch like the idea cf the tentative solution, . which
was introcduced in Chapter II. Such a tentative solutica is
only a sisplified -<system. Barl (Ref. 64] calls these
simplified systems frototypes. Carrying this one step
farther, Naumann and Jenkins define a prototype system as
"a system that captures the essential features of a later
systen." [Ref. 62]. The sections which follow will
describe tike prototype process, the role of prctotypes as
models, the ways in which fprototypes are used and ccncludes
by showing how the set of seven desing elements are
supported by software prototypes.

B. THE PFOTIOTYPE PRCCESS L

The terms [fprotctype and prototype systems have beccme

rather ccemon lately, found in both the management litera-
ture (Barvard Business Review, for example) and the scftware
engineering literature (proceedings of confersnces and wotk-
.ﬁ shops especially). Althcugh the term prctotype has beccme
standard, early descripticns of the process were called

"heuristic development" and "iterative anhancement"
, {Ref. 61, 65
Q. Regardless of how each of us may use the term, ¢there is

general agreement that the main purpose of prototype systems
is exploration and experimentation; "the aim of +he =arly
: prototype is to learn, to find out, to discovser." [Ref. 68,
- 64, 66]. In keeping with their purpose, protctypes are
relatively inexpensive, flexible, and simplified systeuns.
Bally, Brittan, and Wagner describe the prototype process:

Inp the grctoty e strategy, an initial and usually highly
simplified pro otzpe vérson of the system is designed

implementsd, tested and biought into operation. ase

on the experience, gained in the operation of the first
prototype, a reviséd requirment _is established, and s
seccnd Erctotype designed and implemented. The cycle is
regeate as “cften as 1s necassary to achieve a

50

P T Y S P R .

P AT Sl Sl S S A S IR i A S il el DS)
. [.o . - . : . -

o L2t SRR i Sh Bt Suaect

satisfactcry operational systenm bearing in mipnd th
poss;bl{ escalating_ cost oI each subsequent cycle; 1
may well be that cfly one prototype is necessary bzafcr
prcducing the final System. ([Ref. 68: p. 23]

Mt

e

Frcm this description, four steps are evident [Ref. 62]:
1. Identify the user's basic information requirements.
2. Develop a working prototype.
3. Izplement and use the prototype.
4. Revise and enhance the prototype.
Figure 4.1 illustrates the prototype process.

A prctotype system must be implement=zd quic..” , perhaps
in hours or days, certainly no more than two or thrse weeks.
The advantage here is in the user-designer interactions:
the user is given a working system to operate and criticize,
the designer receives responses based on the user's exreri-
ences. The quick response of the designer gquarantees that
the first prototype will be incomplete. This aspect is
important: there is an explicit understanding between the
user and d2signer that the system will be incomplete, that
a prototyre is meant tc be modified, exparnded, supplemented,
cr suyplanted [Ref. 62].

C. PEOTCTYIPES AS MOCUELS

Many authors consider prototypes to be models [Ref. 64,
82, 69]. As mod=2ls, prototypes reduce risk and <es+ altsr-
native designs through live operation. ([Ref. 64].

Three aspects of prototypes as models are important.
First, mocdels are abs=ract:

The critjcal skill cf system_design is . . , claimed tc¢
be _explicatica ¢ the impljcit” models 1in _managers?'
minds, of their decision-making processes and views cf
theizr crganisation and environmént. (Ref. 64 : p. 3]

RIS S dat M it M e R g ChE T R T T T TR m— - T P P ~_.ﬁ-—v'~1

..

-~ IDENTIFY

o REQUIREMENTS

o DEVELOP
PROTOTYPE
R

28 USE

- PROTOTYPE

REFINE &
ENHANCE
PROTOTYPE

Pigure 4.1 The Prototype Model.

Second, managers prefer simple mod2ls at first. As they
begin to understand the models, *they become involved with
the design and implementation +*o build more realistic
systeas. ([Ref. 64].

Thirgd, a prototype is subject to modelling effects.
That is, as a model, the prototype is only a limited version

of the final systen. Sce, a prototype is one kind of sgcale
model, accurate in some vays, inaccurate in others
(Ref. 69].

52

- U WY P P R -

D. STRATEGIES TO PRODUCE PROTOTYPES

Three strategies are generally recognized for producing
protctypes, 1 methodologies (in current use), 2) execu*atle
specifications (state-of-the-~art and research issues), and
3) autcmatic programeaing (a research topic).

1. Ibe 'Methodolcdy' Strategy

There are three basic methodologies which are used
to produce software rrototypes. PFirst, in screen ard repcrt
formatting, the designer produces a set of user interfaces
which will be similar <*o the final systenm. Second, in
partial ard incoamplete implementation, the designer and user
identify cnly a subset of the zotal problenm. Third, for
selective izplementation, the designer devzalops componernts
of tte final system and <then integrate <cthe componsnts.
[Ref. 71]

2. Executable Specifications

The executable specification, <he second tscknigue
for protctyping, is a current 'hot' topic in *thke computer
scia2nca litsratura. Davis [Ref. 72] describes a scftwvare
tool, the Feature Simulator, which "executes" formally
writter fequirements specifications for r=al-time sys*eas.
Feather [Ref. 73] ¢proposes a methodology for develcping
pro+ctyres from specifications based on the *ransformation
of "specification constructs" into an implementaticn.
Perhars the most ambitious work on ex=acutable specificaticns
is that reported by Cohen and others. They pelieve that %"a
protctype serves to micigate both imperfect communication
and lack cf forsight (sic).™ ([Ref. 74]

The solution Cchen and others have adopted separates
the impsrfect communication and lack of foresight issues by
having a fcrmal specification language which unambigicusly

— h Sl NSl S N

NENTRERENEA
.. N LN
St

53

describes systems, and a separate *o00ol (syamabolic execution
system) which helps the -2ader to undarstand any particular
specificatica. This tool can be used by the specification
writer *c validate the specification and by the implsmentor
(or buyer) to and=rstand what exactly has been specified
(i.e., bcw the pieces interact). "Given the specification
and <he tool, a prototype will not be needed."™ That is, if
the designers can ccmpletely specify the rTequirements and
they ¢then use *he symbolic execution system, Cohea and
others believe that it 1is no 1longer useful to develcp a
fFrototyre.

But consider +he following comment by Taylor and
Standish:

._having a precise_ specification language is of nc
since ths user really doesn'+ know what statements
€ in such a lanquage--~ that is, he can't articu-
his needs if he doesn't know what they_ are regazd-
.of whether or not there1%3]a precise languagé for
n

ing them. (Ref. 78 : p.

elp,
o ma
at
es
ta

N ke
tin 0 BT

Executable specifications clsazly are cerntroversial,
especially when thay conc2rn prototypes. Whether such 13
technique gains fprominence will depend on advances in soft-
ware engineering tools.

-\

2. Aptcmtic Prcgramming

Automatic prcgramming is probably far<ther away,
technically, than tlte ex2cutable specificaticn. Automatic
Frogramming can be thought of as programs tha+ help peofle
write precgrams. The general goal of autcma<tic programming
is t¢ allow the software designer +o think 2f +the problem
abstractly, in a way which is natural and comfcrtable.
Autcmatic programming systems are characterized by specifi-
cation methcds (formal, °'by exampie', or ratural language),

+he targe+t language (the language in which the system writes

4 RN Pod] SRR IO NPV Y .4) J

the finisked program), the problem area (area of intecded
';i applicaticn), arnd the method of operation (theorem-proving,
Ll program transformaticn, knowledge-engineering, or tradi-
5? tional prcblem solving) [(Ref. 100]. One advantage cf auto-
: matic programaing is that it could allow £cc more
- informality ¢than an executable specification 1language
(Ref. 70].

B. USES CF PROTOTYPES

(“' Generally, <there are three uses of prototypes, 1) +o
;j: clarify user requirements, 2) to verify the feasibility of a
:ﬁ design, apnd 3) tc create a final system. (Ref. 75].

1. Tc Clarify the User's Requiremants

Ey far, the most popular use of prctotypes is to
clarify the user's requirements. McCracksn ([Ref. 67]
telieves <+hat <+traditionral wricttem specifications Jo not
bridge the communications gafp between the designer and the
user. He states that protctypas encourage usars to chaage
their mind: atout wha:t they wan:i, until +he system is
useful.
‘ Tc highiight <the problems encountered in require-
3£ ments dccumentation, Masor and Car2y (Bef. 76] make a
T dis+tincticn among three *yves of documentation:

- 1. A textual list of requirements (“he most ccmmonly
used)
) 2. An ipterpretive model (gaining in populari“y, eéeste-
52 cially in military systams)
if 3. A working model--a prototype

The textual list, “he traditional methcd of
describing zesquirements, has a distinct disadvantage. There
is a psychological distance betweern avtextual list and what
" the users wili eventually receive. A lengthy (often toring)

55

e

document does not easily convey a realistic sense of hcw the
system will operate and suit the user's needs {Ref. 76].

Interpretive models include SaDT and USE. These
podels use top-down decomposition to manage the complexity
cf large systenms. The more detailed these tools are (or
become) , the mor= specialized the language used. This pres-
ents a significant learning burden to the user {Ref. 76].

Erotctypes, cn the cther hand, present a more real-
istic view cf the system to the users. Th2 users can easily
relate their experience with the prototype to their
requirements.

[

2. TIc Verify the Feasibility of Design

When prototypes are used to verify <+he f=2asibility
of a design, the designers and users are evaluating the
internal design of the software (Ref. 75]. After the prote-
type is developed, several aspects of the design could be
evaluated: the prototype could be used 4o implement and
evaluate certain design decisions; <the prototype could be
used to develop and test a prcduction systz=m; the 2£fficiency
cf the protctype could be examined; or the prototype could
be developed on one machine, and the firal syster imple-
pented cn the target (or production) machine, when it
becomes available.

3. Ic Create the Final System

Prototypes may be used to create the <£final systen.
This means that part or all of the <£inal varsicon of the
frotctype nmay beccme part of the production systenm
{Ref. 75]. Examples of this technigue might include data-
base managenment system (DBMS) applications. Por exawmple,
once created, *he fprctotype mignt remain unchanged espe-
cially if the system efficiency is satisfactory. Oon the
othar hand, critical (or perhaps all) of the sys+em woulu be

56

| i = - P & o adh a8 o8 A 2 B o I A e - Y ~‘ =1 > -

et Ao

Lot

Abebbeioctetineieceadlih bt od

T T T T N N N g N Ty TR " n o, .

recoded tor efficiency, either in <the DBMS language, ir a
host language, or in assembly language.

P. FPROTCIYPES ADDREBSS THE ESSENTIAL DESIGN ELEMENTS
1. Pgototyping is a Symmetrical and Adaptable Process

Frototypes explicitly address the symmetry and adap-
tation necessary in software design. Naumann and Jenkins
[Ref. 62] believe that prctotypes provide an appropriate
response to changes in the develcpment process (protlems to
solve and available resources) as well as to changes in the
envircnment. Bally, Brittan, aand Wagrer state that the
protctype strategy is an admission of failure, an admission
that there will be circumstances when we will be urable to
develcp the right system on the first attempt [Ref. 68].
Earl's ccament vperhaps best expresses the overall idea of
syametry and adaptation:

The prc+c=ype systeéem . . allows . . . design b

discovsry as much as by prediction, where the unexrécte

results_ may be _ as s;an;flcan* for d2sign as the
expecteéd. (emphasis added) [Be 64 : p. 166].

2. Erototyping 'Tames' the §icked 2roblenm

In Chap*er 11 wicked probleas were described as
problems where the ipformation is coanfusiag, where +hers ara
many clients with conflicting values, and where “he zapifi-
caticns in the whcle system are thorougly confusing.
Compare those characteristics to the experiences cf Asner
and King:

the protctype approach works when users do not
know thair specific requiremanus, {where] the 2ffective-
ness of an on particular approach canrot be easil
assessed without real-life experiencs, . (uhere
the system will be an integral ar* of *he da -to-day
activities of the users. . . f. 79 : p. 30

57

P N

Leveloping rrototypes doss more than reccgnize
vicked rrcbleams. The designers and wusers of protctyges
explicitly acknowladge such things as:

1. Wicked problems have no definitive solution--as BRally

and others have stated, prototypes are an admission
that more questions can be always asked and amore
information can be requested.

Every formulation of the wicked problem corresponds
to the foraulation of the solution (and vice
versa)--there is an explicit understanding betwveen
the desinger and user about basic assumpticns that
will be made when designing a prototype, <especially
the first version; the protcype strategy is desigred
tc ccpe with a fluid situation and fuzzy requirements
(Bef. 68].

Wicked prcblems have no stopping rule-—designers and
users realize <that prototypes may be continually
mcdified cr refined until some extermnal limit (*ine,
resources, prcduc+ion need, user satisfac<ion, etc.)
is reached.

Sclutions +o wicked problems cannot be correct oz
false. They carn only be good or bad--protctyving
éxplici+ly recognizes the notions of “technically*
correct and "psychologically" correct. Users contin-
ually ask for refinements until they become satisfied
(i.e., where the system is <technically and psycho-
logically correct).

Ir solving wicked ¢fproblems there is no exhaustive
list of admissable operations--prototypes allow
designers and users the freedom to explore and exper-
iment.

No wicked proktlem and ro solution to it has a defini-
tive test-- designers and users become quickly aware
that prototypes clearly identify tradeoffs. The

....................................

Frctctype may te flexible and sacrifice (i.e., "fail"
the test for) efficiency.

o 3. Scftware Protctyping is Satisficing

REecall from Chapter II Simon's argument <hat peorle
accert altermatives which are good enough, not because they
wart to, Lut because they have no choice. In Chapter III
evidence was presented which clearly shows that software
designers ccnstantly balance trade-offs and are fcrced to
accep* satisfactcry alternatives, rather than aa optimal

b J~° '.;.....;.".

alterpative.

The process c¢f developing a prototype explici+l
deals with satisficing by recogrizirg the interacticn amcng
the user, designer, and systesm. Conflicting goals and
- priorities are inevitable. Negotiation between *-he designer
3} and user will lead tc a satisfactory system.

In the prototyping process, the designer ccnstructs
successive versions of <the systen, compromising aad
- resolving conflicts Letween the context (that is, user needs
ar.d desires) and the form, as ccnstrained by technology and
N econopics [Bef. 62 : p. 37].

4. Egototyping is Communicating

The prototype facilitates communication between the

O NN
et

5 “ :; Y ;I ‘: ‘ e

-

designer and the users The basic model of the prctoype
process shows that ccmmunication is a necessary element of
the process. Withou* communication there is no protctyre.
Mason and Cary [Ref. 76] believe that prototyping overcomes
the fundamental froblems of ccamunication between users and
S designpe:zs. Naumann and Jenkins ([BRef. 62] emphasize the
- roles rparticipants have and beliave that prctotyping
stresses the interactions betvween the user and the desiqrer.

PN e)

59

.
b

ol

2
PR

a

Participatior in scftware design can be painful
[(Ref. 64], yet

Users _rlay more active roles _in prototzginq than is
met

possibleée with_ traditional development

set the _develcpment pace by

and_ evaluating the prototype.

ods. Users
the time they _spend using
decide when the

The
g;ﬁle cf evaluation and refinement engs. [Ref. 62 : p.

The prototype approach exploits the interaction

tetween the designer and user.
fully mcnitored interaction in

5. 1Ibe Software Prototype

Several authcrs [Ref.

Contrast this with the care-

+the traditional apprecach.
is a Learnirgq Aid

64, 68, 66] agree that the

very purpcse of the prototyre is to allow the user tc learn

about the =system; experience
valuaktle produact.

with the system is <the mcst

When prototyping,
users learn, develofping a system which is more realistic in

both designers and

its econcmic purpose, organizational context, and technical
perfcrmance {Ref. 64 : p. 166].

Earl [Ref. 64] believes that prototype systeas
permit acticn learning and that there are few other vehicles
availatle fcr live and flexible organizational develcpment.
As a vehicle for learning,

e o « o the protoyre model is the most effective repre-

sentaticn possible "since it enables evaluation _of +he

prorosed design in contexkt. The prototype model is the

iep;esentation that anticIpates 2valuation of_the design
n its operating envirorment. [Ref. 62 : p. 33]

60

3o e S o A e L R

Lo v v o

6. TLke frototype Processs Accounts for Organizatiozal

dssues

As pointed out in Chapter III, the organizairtcnal
context is an important consideration in systems ard soft-
vare desicn. Informal organizatioral structures and <he
sub-elements of organizations play large roles in the
success cr failure cf a system. As an experiment, the
Frototype provides an opportunity to test the impact of a
syster and experiment cn the organization's interfaces, at
least reducing the risk of a nonviable system and also
providing crportunities for introducing arnd monitoriag job
satisfaction improvements, organization development, and tke
like [Bef. 64: p. 164]). Earl believes that prototypes are
relevant to organizaticns because o0f individual differences
among fpecple in the crganizatiom:

e.2 « =« the prototype me;hodology may be relevant, for
different values, perceptions and” persSpectives do exist
ameng different interest _groups, byt the different
implicaticys and ippact of a sSystem desigj may _ac® he
aprreciated until it is implemented; iftdeed " all the
opticns may not be apparent. dith a wcrgzng grcto:ype
system design values mag be explicated ané stakehcldérs
counter the technical thrust of the specialists. . . .
(Ref. 64 : p. 165]

To say that prototyping "solves" the organizational

issues in software design is, however, going toco far.
Frototyping deals explicitly with the issues, yet requires
quite a kit of "“orches*tration". The management c¢f the

rrocess is not without political consequences {Ref. 66].

Hew d0 we measure the worth of a prototype as it
contributes to our design cf software? Earl arnsvwers this
question with the following statement:

Possitbly the most valuable contribution of +the protctype

methcdclogy is to, foster a climate of system apprecia-

ticn, _user creativlti and experimentation, Iintelligent
learning. (Ref. 64 : p. 166]

us€ and organisaticna

- e e
TIPSR

Perll BRI DU S V)

7. The Prototype Process is Evolutiopary

That the prccess of protoyping is incremental and
evoluticnary shold ccme as no surprise. The important fpoint
is that the prototype process, again, explicitly deals with
the issue. Software design has been shown to be 2volu-
tionary, yet traditional software developmeat is unable to
deal with it. Naumann and Jenkins [Ref. 62] state, as a
'principle', that "[p]rototyping represents and pacallels
the dynamic process of growth, change, and eaevolution
existing in any living system."

A survey of the 1literature reveals an interesting
pattarn among the models fcr prctotyping. Althcugh most
authcrs will agree that the traditional life cycle is not
evolutionary, with the exception of Naumann and Jenkins
[Ref. 62], (see also figure 4.1) Basili [(Ref. 65], Bally and
cthers [Bef. 68]), Earl (Ref. 64)], Mason and Carey (Ref. 76],
and Zvegintzov [Ref. 57] all attempt tc force a cyclic
struc+ure or software develcpament.,

Ferhaps a review of evoluzion 1is ia order. When
some thing (animal, crganizaiton, or design) evolves, it
begins sigply (a few cells, a few people, a few details and
many simplifying assumptions) and grows in complexizy, cften
changing remarkably from iz humble beginnings. This
process is clearly pct cyclic. Rather, a better image is
<he sgiral, much 1like the spiral coil of +he shell of the
Nautilus, growing in size yet wmaintaining the essential
nature it began with,

Figure 4.2 illustrates the evolu%ionary nature of
prototypes. Each “chamber" can be considered to be a single
grototype, the wall cf the ‘"chamber" denoting the point of
refinem2nt and enhancement. The only restrictions on the
number of "chambers" (protoctypes) are in <the envirconment
(exhausted resources, end of time, too complex or unwieldy,

and sc¢ cn).

1 Figure 4.2 Evolution of Prototypes.

G. SUMMAEY AND INTERMEDIATE CONCLUSIONS

fﬁ This chapter has explored the multi-faceted aspect of
EZ *he software prototype: the process, its role as a mcdel,
= constructicn strategies, and uses. The chaptar concludes

with a rpersuasive argument that prototypes explicitly
support the seven design clements.

63

- Several conclusicns can be stated at this time. Picst,
' the current practice c¢f software engineering only recognizes
\ a few cf the design elements described in Chap*er II.
ﬁf Software design coarletely ignores the fact that these
= elements are interrelated and mutually dependent. The

traditional methcd of software development only worsens the
problem.

Second, *the prototype approach to software design and
develcpment paturally suppcrts the set of design elements.
For example, the prctotype approach enccurages, requires,
and explci+s the interactiocn and communicaticn bstween the
user and designer. By making this explicit, prototypes will
lead to a tetter design.

Third, developing better systems, deliverirg *them on
- time and within budgets are in our best interests. The

protctype approach vill allow software engineers and
designers tc achieve these gcals.
The rext chapter triefly describes softvare engineering
xy envizenments and how suck an environmert could aand should
ii support scftware protctyping.

64

. s e T T N T T N T W T N T TR T W TN T W T W TR T A TR AT Oy e e e T - vYa G T At N St R el Y Sl Ml
- IRC S Ak it At SN B N N A A - -

i V. THE SOPTHARE ENGINEERING ENVIRONMEN

A. INTIBOCUCTION

Most authors agree that prototyping kas become fpossible

through recent develcpments in computer technology [Ref. 61,

62]. Ccllectively, this technology is call=d the sof%ware

: engineering environment (SE2) ([Ref. 83], the programming
fn support environment [Ref. 107, 105], or *he software devel-

R opment environment [Ref. 84].

- There are as wmany definitions for, as there are
references to, a scftware engineering environment. The
definition cffered by Hausen and Muellerburg seems tc be the

- most satisfying:

i~ [A _Software Engineering Environment is] an ins+=rumern+ed
- and organized Software development ;aboratory vhere manj
i pecrple " cccrerate _ with each other in a fully organize

working process, in the design construction, ekXamina-
%%%n, tuning and maintanaace of software. [Ref. 83 : p.

Generally speaking, the literature cites two afgroaches

to ccoputer-aided design for software development: 1) the

SE2 is a systematic approach, and 2) toolboxes or toolkits

oty wvhich sugppert specific software desvelopment activities
% (BRef. 85]. The UNIX development eavironment is an excellzant
3 example c¢f *he tcolkit apprcach [Ref. 86]. The £facilities
of UNIX wmay be thought of as a "tool kit" from which *he
devalcper can select tools <hat are appropriate fcr a

[T T T Y B

Ve

specific task. De*ailed di scussions of the UNIX environment
and available tools can be found in (Bef. 87 , 88].

The <toclkit apprcach, howevar, has been criticized
because:

65

SeL T eT A T av rwTT—Y EM N an giue n T W N N T PR ——n——— Pr——_—

s aa am s A ae el

1. Tools are not organized to support specific sof+*ware
develcpment methodclcgies;:)
2. Tccls dc not capture maragament or control data for
scftvare develcpment; and,]
3. 1Individual tocls are largely uncoordinated {Ref. 89].]
lauber has reviewed 11 +o00l systems in practical use and i
inds that ¢cnly two systems (PSL/PSA aad PDL) are in wide
use.?®

There are several "programming™ envizonments ip active
use (for example, Interlisp [Ref. 90 , 86 , 91]), or '
rlanned (for example, the Ada programming support envircn-
ment (APSE) [Ref. 93]). Unfortunately, there is nc 3E2

which specifically =supports the prototype process. This]
chapter will first describe some general charac:teristics of a
SE2s and then =2xplain +hose elements of SE2s which are)
needed to support sof+ware design and prototyping.

E. CHABACTERISTICS CF SOFTHARE ENGINEERING ENVIRONMENTS ;

]

1. Development Support Ta

n

There is general agreement +*hat an SE2 supports 3

three develcpment "tasks": 1) software production manage-
ment, 2) technical aspects of software development, and 3)
user participaticn in applications developmen+ [Ref. 83, 94
e 957 An SE?2 aids software management by f"cap+turirg"
information about design decisions and the progress of the

develcgment itself. An SE2 supports software develcrment by

: providing automated tools. During the developwmen= of
é; specific aprlications, the SE? places special emphasis on
the rcle of user-designer interaction.

8froblem Statement Language/Problam Statsment Analyzer
and £ Prcqrap Design 1language. A detailed review of " the
various tcols and” eonvirdnménts in currenpt use can be found

-‘ég ﬁszggssgig! on Software Engjnesring Znvironments , Huenke,

.—nvr. | pia aareas
S At . ‘¢ ', .

66

R g N
PRI

T T T

2. Integrated

An integrated SE2 will support the three develorment
tasks by unifying the tasks into an 2nsembl=. Integration
anpplies to the ease of using and <the ease of documenting
those activities asscciated with individual tools ([Ref. 84].
Perhags cne of the mcre important characteristics of an SEZ2,

LE S 2 .0

i

inteqraticn makes it easier to combine various tools in
crder to perform a specific function.

3. QUpnifccnm 4

A variety of automated tools are wused by the SE2 to surport
the thrse develorment tasks. For raliable operaticn, *“he
tools must be consistent with one another [Ref. 84, 94 , 95

P SRR

s 96]. If one tool is <cousistent with the res*, +he SEZ2
will Dbe easier to ctese. It is easier o 1learn and use
special fcrmats and ccmmand s*ructures when they are consis-
tant among all of the tools.

. |
{
3 4. 1

Suppor:t a Solution Strategy)
1
The <+*echnical aspects of software davelopmen= 1
3

raquire the SE2 to support two solution strategies, cae
genz2ral and the cther specific. Generally, Soni and others
telieve that the SE2 must support different ways of solving
: the fproblenm. (Ref. 84]. That is, <+the SE2 should support
f many different ways cf solving problems. It should be flesx-
= ible encugh any fproblem-solving strategy. For the specific
- strategy, Wasserman ard others believe that an SE2 ngust
support toth the software l1ife cycle model (*he 'watarfall’
model) and any particular sof+ware development methodclcgy
which dces not diverge very much from that model [Ref. 94, !
95, 97]. In either case, *he objective is the same: to

arrive at a solution.

67

S. Adartabls

Fcr practical reasons, an SE2 should be adaptable.
In most organizations, each of the development tasks is
i covered by different crganiza*ional groups, each with their
{3 own stylss, attitudes, and so on. Also, the individuals
. within each group bring different perspectives to +the jcb.
With suck a wide range of personali%ies, a ccllecticn of
tools shculd be flexible, changeable, even extensible
(Ref. 84]. The SE2 should be able to adapt to the design-
er's (or user's) sophistication and should provide defaults.

- Pefaults cculd be <casily changed as users beccme mwmcre
b scphisticatsd [Ref. 94, 95, 96].
- 6. Funciionally Unigue

Within each development task, there are a number of

unique functions. Tc reduce ambiguity, misunderstanding,

if and errors, t720ls within an SE2 must be functionally unique.
{ That is, *hey must have a singular purpose [Ref. 84, 94, 95,
' 96]. Each tcol must te limited to a single d2sign func+ica.

7. Ipteractive

An SE2 nmust have interactive system capabili+iss.

o2 [Bef. 85, 84, 94, 95, 98]. There are two reasons feor this:

= interactive systems aid communication among the par*icirpants

; in design, and designers can work at <h2i:- own pace (iater-

;‘ actively) rather than someone else's (batch). User partici-

- paticn, c¢ne of ¢the development tasks, is simplified wken
using interactive systems.

8. Recent Dzvelcrments

Two ideas about SE2s, personal development systeas
and a software engineering knowledge base, seem to unify <ne
+hree develcpment tasks and embody the characteristics just

.f

68

P Y, Y S

PIMACAA RIS M et RN AR N S AN Sl Wik A

stated. Personal development systems have all of the char-
acteristics discussed (integrated, uniform, suppo:t a solu-
t tion strategy, adaptable, functionally unique, and
. interac*ive). Their most important feature, though, is the
dedicated support to a single designer [Ref. 89 , 94 , 9S5].
A software snvircament knowledge base would capture informa-
tion about the design activity (for example, design deci-
sions) as well as the development process (a continucus

i? effort) fcr mnagers, designers, and users [Ref. 96]. This
- knowledge base would make the information easily available
{\ and wculd bs done autcmatically.
Ce. A SOFTWARE ENGINEERING ENVIRONMENT FOR PROTOTYPES
;‘ Mcst authors agree that a ‘'successful' SE2 must suppert
- a certain view of the design process [Ref. 85, 94, 95, 97].
: Following the 1lead of Lauber [Ref. 85], a collecticn of
:5 tools, or components, which support *he set of sever design
‘ €elements of Chapters II and III, and which suppert the
. develcrment o0f protctyvoes, ccvered in Chapter IV, is
: prasented. This is followed by descriptions of how such
compcnents support scftware design principles and ©proto-
A +*ypinge.

S 1. Jechpical Comroments :
;ﬁ There are several components which should be
included in an S¥ (Ref. 62, 75, 79, 83, 101].

:f a. Database Management Systems (DBMS)

- A DBMS serves two purposes in an SE2, First,
the DEMS enables storing and retrieving informaticn abcut
the design as well as the development process. For exanmple,
a reccrd cculd be kegt of when each version of the protctype

was released, who designed it, relevant design decisions,

and so on. Secord, a DBMS allows for ‘f'quick' da=sign and
- programsing of data handling features (Ref. 62, 61, 83].
(; Recall ttkat the ability for quick turnaround of a wecrking
| system tc the user is a necessary feature in many proto-
. typing situations.

E. Generalized Input and Output Software

Query languages, report generators, and repcrct

writers are often features ¢of a DBMS (for example, PFCCUS,

RAMIS II, and NOMAD gprovide these features). These features

I allow fcr easy data retrieval and data updats. Repcrt

ij generators can produce complicated reports with wminimal
programming effort [Ref. 61, 62, 79, 101].

C. Graphics Tocls

Graphics are ideal for representing +he large,
and cften coamplex, structures of non-trivial software
designmns. These tools are particularly suited for the rmeth-
f cdolcgies which use structure charts. For exampl=2, Delisle

(b
(o7}

{Ref. 102] describes a set cf graphics-based <ocls, anz

ct

+tool, an Evaluate tocl, a Format tcol, and a Clean-up tocl,

LG oo 2
IS]
@ ol

which were develcped to support Structured Analysis).
d. High-level Languages

High-level 1languages (variously described as

non-grocedural languages, fcrmal specification languages,

and so on) have one objective, flexibility [Ref. 62, 83,

;} 101]. Such languages enable the designer to describe" what
s to do" rather than "hcw to do" it. The system resolves the
b procedure and snculd produce executable machine code. The
designer, given such a *ocl, can use abstraction to its
Tﬁ fullest extent (the Gamma software engineering system
?Q {Ref. 103], for example, specifically supports abstraction).

70

S R e -

€. Interactive Systems

Devices and equipment (for example, wcrking

e Kooa b

staticns) which suppcrt interaction are essential [Ref. 61,
f 62, 83, 98). Interactive terminals give users and designers
- the perception of rapid and efficient operation anpd revi-
sion. Generally, these facilities are adapted from the hcst
computer or network of the SE2, (Personal develorament :
systens c¢culd be thcught of as extensions of interactive

cial xodels (as in FOCUS) or simulation models. Real-world

systeus.) ;
d

f. Applicaticn-oriented Models L |

4

Models are an important fesature of an SE2, TLey N

are used to support human decision making [Ref. 61, 62]. i
Examples of models which are potentially useful are finan- a
)

nodelling {BRef. 43] is also an important element in ¢the SE2,
g. Tools fcr Software Testing

There is clearly a aneed for toocls which simplify

abadadaii, et

software testing [Ref. 83, 101]. Hausen and Muellerburg
rspor*t that most tools of this type concentrate on verifica-

‘ tion and validation, that is convincing ourselves +tha+ “he
Qf program will exscute properly. They arque <+ha+* scftwvare
- tools fcr pregram testing should covar more than just veri-
fication and wvalidation. They =cecommend a2 philosophy of
quality imgrovement which includes qualit assurance
(definiag software standards and controlling their cbserva-
tion), acceptance testing (demoanstra*ing to the wuser *ha*
the scfrtware is accerptable for operation), and verification

and validatiocn.

T L U T U U O .

[)

Al

L 4
[]

R i O ARt et et Mt T T T T T TN T TN mh——3———,

2. Surrort for Scftware Design

Any SE?2 must te based on a particular view cf soft-
ware design. {[Ref. &S5, %, 95, 97)]. The view presented in
Chapters II and III is unique, although elements of that
view wmay be supported in different ways by different
systeas.

The SE2 must recognize, and provide facilities for,
the symmetrical and adaptakle process of design. If the
soluticn tc a problem changes the problem, features cf the
SE2 pust allow revisicn, interactive use by clients (it is
their probleam, after all), and record-keeping, especially of
decisions.?®

The satisficing aspect of design may best ke met by
using +he modelling tools of the SEZ2. Simulatior tcols can
help answer "what if" and performance questions. Financ:ial
modals can help decide economic gquestions. Planning,
contrcl, ard estimating models can also help to deciie on
the wcrth of various tradeoffs.

The "wicked r[problem" aspect is particularly vexing
in «he SEZ2, High-level languages caa help by allowirg an
abstract descrip+tion as a formulation of ths problem. The
abstract statements are then transformed by “he systeam into
concrete (that is, axecutable) code {Ref. 105, 106, 107].

Ccmmunications between the user and the designer is
aided by interactive systems. Graphics aliso aid user (and
designer) comprehension. Al2xander and others have shcwn
how the notion of patterns helps bridge the communicazion
gap. Kuc, and cthers, (Ref. 80, 84, 108, 109, 110, 111]
have adcpted this ccrcept in their "forms-based" scf+ware
development environment. The *forms' within the system are

9%hite [Ref. 10“2 presents a model for _recording cels-
vant information alout design decisions during softwvare
develcpunent.

72

PR T YO T W UL W WAL - Soa - PSP P

TR ——

P4 P

V.4 IR

3

N PR

LTE

Ly - - . e St Mt At M ot -Thal a4 4 " ——— —
R . e A A AN - Trn e Y . (S di =l AP It e 2

2 i, A_'.:"_')L

used tc identify and define ‘'patterns! that are aktove *he 5
level of prcgramming langquage constructs. Although a full
discussicn cf the TRIAD (TRee-based Information Analyzer and 4
Develcper) system is teyond the scope of this work, it is an :
excellent candidate for anr SE2 which supports software :
protoctyping. X

The interactive facilities and modelling features of)
the SE2 will help tc aid the 1learning process in design.
The notion of 'learning by doing' was introduced in Chapter :
III. Tc =support that notion, <the SE2 should allow the]
designer to learn, =2arly, the consequences of a design deci- i
sion. The designer must then be given the chance o revise 1
his decisicn, based c¢n the 'operation* experience.

Crganizational issues must be explicitly recogrized]
in ary SE2, Pirst, there are organizatioral resources which q
ar® needed to supporrt the SE2; programmers, operators,

managers, space and facilities, and the computer hardware
assocated with the SE2. Second, the work patterns and work
skills c¢f the vpeople who work in the SE2 are likely +*c¢
change. Unfor<unately, mcst current Jjevelopmen*t envircn-
men+ts stress the environment over +the users of the envi-ca-
men+ [Ref. 98). Typically, those environments have "quirks"

ot

vhich require people +o adjust. The system should adjust
the skills and the preferences of the designers who use i+
(using, fcr example, cestcm default features). If£ we
consider the SE2 as an element of a complex organization
{Ref. 59, 60, 98), tke environment's interaction with peorle
is crucial; without that interaction, the SE?2 is useless in
any practical sense.

Finally, tkte SE2?2 must explicitly recognize the
evoluticnary aspect of software design. The current systems
support the vaterfall model of software develcpment
{Ref. S4, 95]. The database management system, interactive
facilities, and high-level langquages will easily suppcrt the

73

z ‘ R
-‘l.l.l‘l' M

R
HY
»

1
.

)

.
7%
et

P ——
R

P
sttt ey,

S W]

............

..

evoluticnary concept of design. Report generatcrs and
report writers should aid the documentatior process as the
design evolves.,

3. Suppert for the Prototype Progess

The process cf developing a softwara protctype was
covered in Chapter 1IV. There are four steps in that
process: 1) identifying the user's basic requirements, 2)
developing a working prototype, 3) igplementing ard using
+the protctyre, and 4) revising and enhancing the prototype.

An existing database of the SE2 is ideal for identi-
fiying the user's initial requirements. Hcwaver, there are
groblems if the database is empty. Kangasallo [Ref. 112]
preserts a model ipn which information requirements are
interpreted as a set of complex queries by the database
management systenm. Additional features c¢f that mcdel
include a ‘'grogram ccnstructor! which generates code kased
on the queries. A working prototype is a result of this
model.

Another methcd depends not only on the database
management system but also cn the automated tools within the
SE=2, Cheatham [Ref. 105] presents a system in which the
designer and user develop an abstract model of the prcblam
(possibly frcm the database). Transformation refiremernt is
applied (by the automated tools) which results in executatle
code--a working rgrotctype.

In both of these instances, the SE2 suppecrts the
develcpment of the user's basic requirments followed Lty an
automated process of develofping a working prototype. It is
important that some effort be made to apalyze the user's
requirements so that reasonable queries can be made ard
reascnable rodels (of the problem) can be developed.

74

Maaaman e e

Other systems are availabla which help %o develop a
tasic set cf user requirements. Some ar3 quite complax 4
(Ref. 32)] ard might be difficult to integrate with the SE2,
Developing a working prototype, quickly, should not
be difficult to accomplish in the SE2. High-level
languages; code generators; transformation refinement

Y iy W

(aentioned above); application development systems, such as
ACT/1 [Bef. 76] and, application generators [Ref. 75] make
it <easier to develcp working prototypes. Ideally, the
system wculd be completely automated.

An abstract model allows the designer to focus more
easily cr the results of his or her da2cisions, rather than

the implementation dstails. An abstract model zlso prcmotes

flexibility when it is reused. ([Ref. 105]

Iosplementing and using the prototype becomes much

easier witen interactive systems are used. User interaction

is essential and interactive <+erminals allow +the user +o

verceive rarid operation and revision. They also help to

speed user evaluation [R2f. 62].

Fevision and enhancement are €facilitated in the SE2

ky using the datakase managemsrt systsam, high-1level

languages (and abstract models), the generalized izput and

output tcols, and graphics tools. The database ce¢ntains a

racord c¢f rpast designs and design decisions, changes are

easily made to abstract wodels and high-level 1language

constructs, default values of the generalized input and
output tocls are easily ad justed, and the graphics tocls

will enatkle both <vusers and designers to spot patterns
quickly. The user is quickly accommodated, +the database
panagenent system automatically tracks versions and design
decisions, and the designer is able to defer low-pricrity

details witkout fear of compromising the design: the SE2

relieves the designer of much, if not all, of the drudgery
pormally associated with software design.

..............

il Pk N A
<‘1 R Y

-

D. SUMBARY

The preceding sections have reviewad the characteristics
needed in a software engineering eanvironment, have identi-
fied the <components of a software engineerinrg environment,
and have described hcw the components interrelate to support
both software design and the prototyps process.

It is dcutful that there are any softwaras engineering
environments which support completely the idea cf proto-
typing. Tc a limited d=gree, commercial systems, such as
FOCUS, NCMAD, ACT/1, to name a few, support particular
aspects c¢f the prototype process. For example, FCCUS and
NOMAD facilitate aprplications programming 3in the Dbusiness
community by allcwing the designer to customize reports or
other apprlications for a specific user, or group, based on
an already existing databa se--the vice-president of =sales
might be interested in the sales of a particular prcduct in
a particular geographical area. ACT/1, and other sigmilar
products, make it easisr for designers to custcmize the
formats cf “erminal screens £or tha2 user.

The products mentioned here ars three of several hundred
commercial and res<eerch systems and environments. This
chapter has purrosely avoided a lengthy review of any of
those hundreds, and mentions a few by way of 2xample only.

76

...

VI. CASE BIAMPLES

The four cases which follow were chosen because in each
there was an explicit decision began to develor and use =
software prototypes before the project began.

A. SYBMEIRY, EVOLUTICN, SATISFICING, AND CONMUNICATION

Heckel [Ref. 113] describes the process of developing a
ptototype while designing the Craig translator. The prcject
4eam explicitly chose to develop prototypes for =several
reascns. First, they were concerned about the proklems
which users would actually experience, rather than thcse
problems which the designers imagined might be important.
This ccncern is directly related to the symmetry aspect in
design. That is, tte solution and problem interrelate such
+hat the solution degends critically upon the context cf the
problem. 1In this case, the context is the consumer's use of
the Translator. If the product does nct perform as
vexpected", it will nct sell.

Second, the prodject team vas interested in postpering
decisions about restraints on +the final system until +hey
had to. In other words, +heir design gvolved. The
designers ignored certain restrictions which had been placed
on mewory size, as long as they carefully considered the

i effects of their decisions on the production version of the
. Translatcr.

é Third, the project team planned to use the protetyre as
) the scftware specification. Because they had twc "versions"
K of the protoctype, a black box translator and <the fprcgram
listing, they thought that +they would avoid the traditional
misunderstandings and contradictions often £found in wri<ten

software specificaticas. In this case, +*he designers were
concerned aktout communications, not only between the "user"
and the "designer" but also among themselves.

Heckel*s descripticn shows that the prototypes (there
vere 30 versions!) wvere used to clarify requirements and to
verify tike feasibility of the design. Heckel states that if
they had been forced to make a particular design decision
earlier than they did, they probably would have made a less
satisfactcry decision.

The project was Jjudged a success, although frogress
seemed slcvw and painful. Heckel identifies fcur benefi+ts of
develoring prototypes:

1. The project team could keep trying new +hings;

2. The prototype was a good model of +he final prcduct,
sc everyone had similar expectations about what the
product would do;

3. Several decisions could be postponed without
affecting the schedule; ang,

4. Tre designers focused their efforts on opporiturities
rather than problems.

The development process had some disappointments: scft-
ware development tock longer than expected and the £igzal
product tcok more memory than expected. Heckel did not
speculate on vhether ‘hese "disappointments" could have been
avoided. One interpretation is that the designers vwere
unable tc meet all of their objectives and when time ran out
their design was Jjudged to be good enough. Thus, the

"disappoirtments” can be at*ributed to the satisficing

aspect of design, especially the need for more memory. The
designers obviously made a trade-off between the "gccdunsss"
cf the prcduct and the amount of memory they had originally
planned.

0
L

V-
-4'-.
Fa
"'.

Ihis case illustrated hovw the use of prototyres
addresses :the symmetry, evolution, communications, and
satisficing aspects of design.

B. LEABNING

Hemenway and McCusker { Ref. 116] describe an exploratory
project which is 1leading to
negotiaticn and entry support sys=em for
(the Bell systen). The project is the
user in*erface and the suppcrting software for the systen.

the develcpment of an craéder
telephone sezvice

cdevelopment of <the

There are two reasons given
1) to evaluate the
feasibilicy of

for buililding an operational

Frotctyre: use- interface and 2) to

assess the a particular scf+tware architec-

*ure. Even thcugh the reasons coincide with two uses of

Frototypes (that is, <o clarify
verify the feasibility of a design)

user requirements and *o
they are related *c :Iwo
aspects cf design. The aspects are learning and ccamunica-
+ion ketwesn the designer and nser.

Protctyres of <*he scoftware were daveloped to detarmine
vhether a taktle-driven system could be designed.

determine whether the

Prototyres

cf the user-interface were used to

user-interface wculd substantially increase the leng*h of

time service representatives spend on orders (compared to

panual crder entry ard search).

The case concludes by stating that the results of the
prototype evaluation 1led to making several recommenda*ticns
to the designers of the first release of the system. Henge,

the protctype served to help the designers learn more abcut

their scluticn and their problem.

.
'~

S

...............................

C. WICKED FROBLENMS, CCMMUNICATIONS, AND THE ORGANIZATIORAL
CONTEXT

Jenkins [Ref. 118]) discusses how the decision tc develop
a prototype led to successful development of an autormated
data rprccessing facility for the Congressional Budget
Cffice.

Two aspects of scftware design are apparent in <his
case: 1) communications between users and d2sigrers and 2)
the ocrganizational «ccntext of the systenm. Coemmunications
tetween the designers and users was greatly improved by
using a prototype. RBather than +ry to decide on the design-
er's effectiveness Lty reviewing writtan specifications,
managers witnessed operating demcnstrations. The protctype
also shcwed non-*echnical wusers what it was possible to do
in *heir application areas with the new tools.

By far the most important aspect illus+rated by <+his
case, 1is +the concern of the designers for organiza<ional
issues. The Congressional Budget 0ffice servss the needs of
the Ccngress, adaittedly a ccaplex crganization. So, *he
designers needed inmediate responsss to Congressional
inquiries, because when information is needed, it is «ef<+2n
needed immedjately or its value is lost.

This organizational aspect is also closely «related to
wicked Ffrobleas. Recall <+hat wicked problems refer tc
social system problems which are ill-fermulated, whare the
informaticn is confusing, where there are many clients and
decision-makers with conflicting values, and wher=2 the

80

-4 PR S

.....

PULArSE el et A "l Sl Al f LR R S S M M Sl (ol SO e R S 4 G Jaie Al AN ‘e e Y e rodBaiediaih Bt St et S S e 00 T S AGUL Aol deea sen saden
PR TR Pt MR R . . R AR, . . . il A g . .

ramifications in the whole system are thoroughly ccnfusing.
Clearly CcCongress is faced with these kinds of Gfroblems.
There is every reason to expect that the Congressional
Budget Cffice deals with similar problems when resronding to
congressicnal inquiries, 10

Ibe case presented by Jenkins illustrates how protctyres
can aid scftware design when faced with critical crgapiza-
tional issues and wicked problems.

D. COHMBUNICATION, LEARNING, AND EVOLUTION

Groner and others (Ref. 115)] present a case c¢f using
prototypes tc clarify tha user's requirements. The case is
unusual tecause it startad with a proposal frcm cutside +he
user's ccomunity. The designers set out tc determine if and
how ccmpu*ter tachnoclogy could meat the infermation
processing reeds of medical researchers.

This case is a clear illustration of the importance of
communicaticns between the designer and the user and the
representation used fcr communicating.

Prototyrpes were required in the requirements analysis
phase Lecause2 withéut concrete, working examples " our
potential users could not be surs +that computer systems
are needed, what functions they shocuald perform, <¢Cr how
they wculd use them. [Ref. 115 : p. 100%

Less clearly stated 1is the implication of 1learning
during the design Gfroccess. The intitial design of the
prototyre was based on +he designer's knowledge about

10Consider the fluctuatioas from Congress to Ccngress,
chairsan to chairman, committ2e to committee; from ydar to
yearc, week to week, and even frvom hour tc hour during the
Budget Ccmmittee markup sessions [Ref. 114 : p. 22].

81

.........

informaticn processing needs for medical rssesarch.
Subsequent versions were improved based on use by and
comments frcm clinical researchers. The project partici-
pants

« e _e__agreed to learn about each other's disci
then definé prcblems and atteapt <to devise and e
solutions in collaboration with others in %he
user ccmmunity. (Ref. 115 : p. 1]

The project used an incremental implementation stra‘egy
(evcluticn) under which ma jor softwar: releases ware sched-
uled approximately every four months. Several hurndred soft-
ware changes were made over a period of a year and half.
This case <shows how prototypes can be used “o create the
final system.tt

Ihe case presented by Groner and others is aa gxcellsnt
exapple of hcw ccmmunications, learning, and evolution are
intertwined in scftware design. The development cf proto-
types helped all of the design participants cope wiith those
aspacts cf scfizware dssian.

E. SUMMAERY

These cases illustrate how prototypes help designers
cope with the seven aspects of design which were covered in
Chapters II and III. In each of the cases, the authors
point to =success. For Heckel, the prototypes led =c a
product that was easy to use, had a number of wuserul
features, and was impl2mented on a single-chip micropro-
cessor.

5 e mmmenn
3

. 11The case description leads_the -eader <+c, “hink tha+* a
F. "oroduc+ion! system was_not developed. Every indicaticn is
: that the prctotypes svolved into tne productinn systenm.

3 82

Vo R R e —p—

Hemerway and McCusker say only that prototype evalua+tion

led to reccmmendations to the designers. From this, we can
safely infer that the prototype aided the designer's under-
standing of the froblesm.

FPcr Jenkins, the cverall assessment to the prototype was
positive. Managers liked +the idea of a prototype because
there was nc prior commitment +o0 a particular course of
action.

Groner and others believe that the greatest benefit of
the protctype is that the ¢rrotctypes are concrete, working
examples cf computer systems which are meeting everyday
needs.

Y T ——_——— -q
S - - 3

VII. CONCLUSIONS ' i

A new view of design was presented in Chapter II. This
view identifies a set of seven interrelated and wmutually
dependent elements which were found in the 1literature.
Support for these elements was found throughout the computer 1
and information science 1literature. The set <c¢f seven
clements exgplains how best to cope with the problems, amti-
guity, and uncertainty associated with scftware design. |

CCow PP o et
I oo PR
L - . . .

The rrccess of developing a software prototype is i
presented as the most appropriate way to incorporate the]
design elements into software design. In fact, +the proto-]

type prccess exploits certain elements, such as ccmmunica-
tion tetween the user and designer, to improve the overall
design cf the softvare.

‘.-_',7".1,3! ""‘

e e
PR

Cne of the @more important conclusions is +hat sof+ware
designers, especially designers of large-scale systems, have
much to learn £rom designers ia other fields. The softwacs
design literature shcws little evidencs of influence fzom
other design fields. This werk is a start toward that
needed transfer cf kncwledge.

The software prototype may be “he sensible way tc design
large-scale systems. Recall that complex dasign prctlems
have been called wicked ©problenms. "If some large-scale
system developm2nts are2 ‘*more wickad* +han others, then
developing prototypes seems +o be thes only way to design *he
systen.

Software prototyping 2nables users and desigrers *o cope
with ill-defined problems and changing regquirements. Past
experience indicates that bad technical engineering is not a
froblem with software development. Ratner, unsatisfactery

design decisions and faulty informa*ion are +he real

problenms. Software gprototyres provide a mechanism which
allows designers to test their dscisions and tc lza-a accs
abou+ +tke rroblenm. The prototypes also allow uszrs a

construcyive environment in which to esxpress *heir sa<isfac-
<ion cr dissatisfacticn and 2a s*imuilant ir learning heow o
deal with their problems.

Scf+wars proto¢«yres, however, presen* special difficul-
ties kecause they are not the universal remedy for scftware
design prctlems. Careful management is ne2dz2d to <ensure the
sof<ware p*ototype is <cveally dssignead and nct Jjust pus
tcegsthez., Careful thcugh+t and planning are zecessary kefcrs
ccding begins. Managsrs, dssignars, and use-s must rsasmbec
that a scftware protctyps is an sxpecimen+t. Judgemen* znd
ccmmitment ara needed *to control epdlzss ixtszra

T
Managers rust have ths wisdom %c¢ know whsn %o stcp. 0]
wnile develcping successive prototypes, <here2 is a tend=2n
*o delay fcrmally dccumerting the systen. while +his
problem is not unique tc prcto+ypes, theres must be zttentive
marzgemznt 2nd commitment 20 ensurs adsguaz: and ccmtlete
dccumen*a+icn,

In <sgi+e of these cau+ions, svidzsnce indica*tes <zhat
devzlcping ard using scfcware protstypss is <he bast ortion
for ccping with software design problams, <ZIcr ensuring the
system iIs dzlivered, and for ensursing 2a satisfied usat
pcpulaticr.

- SO

SR A acal 4

oo

-y

Ll il SiNgl Sl a4
At e e T T T W

VIIT. RECOMMENDATIONS FOR FURTHER STUDY

A. MANAGEMENT

Develcping scftware prototypes presents managemeént with
some unusual problems. Many of our current management tech-
niques depend on getting the project done right <+he first
time [Ref. 117]. As we are well aware, this seldom occurs.
Besearch is needed to assess the effect of prototype devel-
cpment ¢cn management.

1. Hcw does the manager decide when to cease developmen*

of poototypes? When is ;he project eaded?

2. Hcw dc managers deal with increased communications
between users and designers? If special maragemen+
ccntrols are needed, how far should they go?

3. What management style best suits managers of software
prctctype projects?

4. How is <he project budgeted anad ccatrolled? dcw is
FIcgress meastred?

B. ACQUISITION AND CONTRACT MANAGEMENT

Current acquisiticn and contract management proceduces
and regulations for scoftware appear to be 1less than satis-
factory, within the Federal Government generally, andé the
Cepartment of Defense particularly. Even as *“hese proca-
duress and requlations are changing, there is scome &evidence
that the +traditional nmodel of software Jevelopment may
tecome required. The Department of Defense has Legun tc
address the concept of software prototypes in +*he DoD
Software Technology Initiatives [Ref. DoD81 : p. 69-71], Lut
this research appears to be concerned only wi*th requirements
specifications.

86

e om e e

1. Hcw can or how should acguitition and cont-act
management prccedures and regulatiocns accomcdatsz the

f principles of design and scftware prototypes?)

2. What is the best strategy for encouraging acceptance
of the software design principles and software proto-
tyres?

3. How might the elements of software design and devel-
cring software prototypes help with +ke acquisition
and contract management for embedded computer

resources?
o C. ORGANIZATIONAL CCNTEXT
= Kling and Scacchi [Ref. 59, 60] reviewed 2 large numker
- ¢f organizational studies while deveioping their views about

N the effect of ccmputer systems upon organizations. When

their ideas are considered within the context of software

prototypes, further research is needed.

‘| 1. How will chances in theorias of organizational devel-
opment affect +he process of davelcping prototypes?

2. Is any one «crganizational <theory best suited for

scftware design and software prototypes?
_ 3. What are the social dynamics of softwars design?
,ﬁ' 4. What are the social dynamics of developing softwace
prototypes?

D. QUALITY

A fundamental part of design is “o satisfy the needs for

quality. Rooke [Ref. Rook82] has concluded tha+ design is

. the mcst important factor in determining overall quality.

ﬂ; Even though one of the objectives of developing software

{Qf prototypes is to achieve user satisfaction (a major 2lement

cf quality), rvesearch is needed to determine how proto%ypes
can affect software gquality.

fﬂ 817

1. If we accept that prototypes will affect a change in
scftware technology, how will that change influence
our percepticns of quality? That is, will scftware

s prctctypes lead users to expect more tham car be me=?
o 2. How might the concept of Quality Circles fit <the
- rrccess of developing software prototypes?

3. To what extent will software prototypes irnfluence

;f scftvare quality? Since prototyping requires :
k) concensus, who is ultimately reosponsible for prcduct 1
quality and 1liability? Should anyone be "ultimately" 4
responsible? ‘

- E. REPRESENRTATION

The software prototype is the uitimate represantaticn of

sl et

the user's requirements. The writtesn specificaticn anchers
the cther end of the representations scale.
1. Wha* other types of representations can aid software

= i

design and the development of software prototypes?

2. What methods are suitable for —representing abstrac-
ticns when identifying a user's requirements before
developing a scftware prototype?

3. Hcw dc different representations affact our percep-
tions and real world knowledge? Can differen%,

- initial representations lead to gquicker design and

BEPIPIPIRTN . - R PRI

development cf software prototypes?

'I_J_J) ._J_P

1.

2.

4.

S.

8.

9.

10.

11.

12.

LIST OF BEFERENCES

Boehn Barr W. Sof twa Engineering Sconom
ggggtice Hallz Iné., " Eﬁ@Ié?oo gCI:ffs, New JeTsey

Thayer, Thcmas A., Lip o Myron, and Nelson, Eldred
Cey ;ggtwa;e Rei-g N%' TRW_ Series of Software
TechnolIogy, V¢ P rth-Holland Publishing Co.,
Amsterdanm, 1978.°

Bcehnm, Barry W. and others, Ch ristics o
So‘;gare gf%%; % TRW Series of Scrtware Tecﬁnologg
veis N #&{1and pPublishing Co., Amsterd 19

Peters, Lawrence J., Software Desigr: Methods an
Techniques, Yourdon Press, New York, 81.

Dunn Robert and Ullman Richard uali+
fcr C 'g msputer Software, HéGraw-Hlll; Ng? Yor%

Alexander, Christcpher,

S on the Synthe
Porm, Harvard Oniversicy Pr

Notes on € thegis of
ess, Cambridge, N1, 1364.

drcher, L. Bruce, "Aa Overviszw of the Structure <f +he
Design Prccess," Emexg 13% Methods in Eavircnmenial
Desi §§ nd Plggnln% Gar; ‘HS"e, €d., dIT PEEsEs;
CaRtitagey NAsE-238s 970.

Jones, J. Christopher, Design Methods, Se2ds cf Human
Futu es, w;ley Interscience, John Wiley & 3ens, It3.,

L<nd

Churchmn, C. West, "Wicked Problems," Maragement
Science, vol. 14, no. 4, December 1967, p. B= ALY

Alexandsr Chrlsto her and others atterr lLanqua
Oxford Préss, 1574 P == a2

Page, J. K., "A Review of the Papers Preserted at tie
Ccnference," ggﬁggggggg_gg Systematic and Iptuitive
ethod %g ines %gg . Industrial eelgv
ICh1E t% ¢ agg nun 3 ilgns,‘ﬁ“‘tf“3one='3ﬁ3 .
o horn ¢ €dS., Thé& MacmiIlan Company, New York,

1963, p. 205-215.
Ellinger, John Henzry, Desij Synthesis, Vol. 1 Jchn
Hileygs Sons, Ltd. zonaan, %96&. SEoesst <

89

...............

*
r
-
4
!
i

13. Rittel, Horst "Some Principles for the Design cf an
Educat10na1 gs em for Designp," .Jourral = of
B ucation, v 26, nos 1-2, WinTer-Sprirg,

IC tectugg;
Y99515

'--Lé

1. Simen, Herbert, The Sciences of the Artificiai, MIT
Press, Cambridce, WX, 8T,

15S. Bazjanac, Vladimir, "™Architectural Designm Theory:
Hcdi of the Des;i Process,"_ Basic ues**on= of
iam

Des Theor B. SpilleT, _ed., Ameficain
pIEevter DIBTLshi ing Co.. NY, p? 3-95¢ 1974;

16. Cross, gel, Naughton, John, and Walker, David,
"Deelgn ue thod and Scientific ﬂethod " Desigr Studiss,
V. 2, n. 4, Oct. 1981, p. 195-201

Pl POV U

-4 POTEVOR

17. Smithies, K. W., Princi g_ Design i
Van Ncstrand Relnﬁ‘I o., New York, 19

18. gop;eg, KarlA Raimugd, OObjectivg: Knowledgs, An
vclutionar £oac xftord Universit Ores
LoRdsr 197y, -BEEaSd * Y ’
19. Pclya, G. How To Solva It, A New Aspect of
Mathematical Me iﬁ “2Znd"edi*ion, Princstor OniveTtsity
Press, Princetcn New Jersey, 1957.

20. Dcdd, W. P., "Erototype Programs," Computer, v 12 n
2, Fetruary 1980, p. gg. I
. 21. U. S. Derartment of Defense, Candidats R & D Thrusts
- fcr ;he §_§tware Technology Initiazive, zcrewcfﬁ'8¥
Jcsephk C. Batz, "Office of the _Under_ Secrstary o
Defense for Research and Engineering (Electzcnics and
Physical Sciences), May 1981,

. 22. Madnick, Sturat E. and Donovan, _John J. Opsrating
. Systems, McGraw-Hill, New York, 1974.

23. Peters, Lawrence, "Relatlng Software Requirments and
Design", Software ineering Notes vol. 3 no. S5,
November 19787'?7'67 =71,

24, gogclsgy, Josgph %5, "Hor?$e NBuilgs a19$ cle",
atamatio vecl. no. ovember .

175 ‘ ' r P

25. vOigh ¢ Suean "Program Design b; a Multidisciplinar
Tean" g edi S of the Pirst Interpational
;0€ering, = CToOmpu=er

gcn%grenc

...........
.....

L}
LY I

A['f L }
Bl S S

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Conn, Alex iaul, "Maintenance: A .
Ccmputer Re rements Definition", Pr >
ggm ut=§ an Software Agg;;ﬂatlogs Contersnce, .

McCracken, D. L., and Jackson, Michael A., "Life-Cycle
Concept Considered Harmful® Sof+ware Eng;n==r1ng
Notes, vol. 7, no. 2, April 1682,"“29-

Neumann, Peter G., "Software Evolution and <the
Dimensions of Change" Letter from +he Ediscr,
g%twa;g E_g;ge ring No‘es, vol. 6, no. 1, January

Land, Frank, "Adapting to Chan -ng s=r Requzﬁementc"
Infcrmation and Mapagement, vo 1983, p. 59-75.

gaugg-ﬂindgnih ?3% o, SSOmeCAnswe:s to the ng:wﬁge
rcblems o € s ata Communications, voi.
no. 5, May 1981, p. 51270 — = == TE4 ‘

gocketﬁ. Saoénn, 2051ng Perfo§m%nce ueirlcg in eysygm
gsign oftware =nginesrirn otes, vol. ne.
Noveaber 8, f. 1 Fegifsetad f ‘ f

Zave, Famela, "An Opera*ional Agproach to Requiremests
%pecz‘ég?t_ons . ggr Em edde 5ys‘fms" £-8 IEEE
ransa e} on o v neeri vol. - no.

JE2355F985E 20 RbEyRes Enaineerind, ’

Canavan, 2dward M., "Systeus, Reli+ty and
Ergﬁ*lonegg 28 Journal of Sysrems Maniagemen
¢ Fe -

ld c*

Gilk "High-LlLevel Systems Architecture: Design
5‘ {ves" Computer, vol. 13, no. S5, May 1980.

Wasserman, Anthony Ira, "A Top-Down View of Software
Engineering"®, Eroceedings of zthe First Interpational
Ccherence On Softwars EnginedFings ~IEFE CoBfuts®
Sociely, Y975, . V-7.

Brittan, J. N. G., "0951 n for a Changing
Envircnment" Ihe COm%utg; Jourpnal, vol. 23, noc. 1,
Fetruary 1980 3=19%

Peters Lawrence J. and Tripp, Leornard L., "Is
Software Design 'Wicked'?", Datamation, vol. 22, no.
5, May 1976, p. 127+. -

Scharer, Laura Le s "PlnpOlnt- 3 Requ en
Da*gma‘;gn, vol. 27, no. 4, April 19381, 139-1

91

aa_ o o

T T T T T R T N N N N e T g— Py

39. Horni Je o "Program Specification: Issuss and
Observa£1ons," Ero ram a2 eci g tion, J. Staunstrug,
ed., Lecture ©¥Wot=s om utef Science, vol. 134,
Sgringer-Verlag, Berlln, 1982, p. 5-18. -

49. Chafin, Roy L., “The System Analyst, and Software
Requirements S ec1f1catlons“ Procesdings cf the
CCmggter and Scitware gglécatlons Tontererca,” 1980,

41. King, Willias R., and Rodriquez, Jamie L,
"Participative Design of StrategiC Decision Suppert
Systeups: An Empizrical Ass=ssmert" Hanagemen‘
Science, vol. 27, no.6, 1981, p. 26.

42. Rotey, Dariel and Farrow, Dana, "User Involvement in
Infcrmation S =teu Development:; A Coniflict Mcdel and
Emgpirical Test", Management Sciemce, vol. 28, nc. 1,
January 1982, p. 73-8%5,

43. Greenspan, Sol J., Mylopoulos, John, and Borgida,
Alex "Capturing More World Knowladge in the
gulrements S ec*flcatlon" Pgoceealng§ g; the Sixta
én ernat*o%%% cn srence on Soffware %_neer;n s IZE®
25 et r§§§“SiIv§='S§ft‘g, Haryland, 1982,
. £ '

by, Gilk, Tom, "BEvolutionary Developmnnt" Software

Engipeering Notss, vol. 6, no. 2, April 1981, F.o7°

45, Stavely, Allan M., "Design Feedback and its Use in
Software TCesign Aid Systens", oftware Enagingering
Nctes, vol. 3, no. 5, NOvember 1978"§T T72-73%

u6. Brccks, Frederick P., Jr., The %ﬁth;gg; Yap-Mcnth,
Essays on Sof*ware Engineering, 1Addisor-Weslsy Cc.,
Rsading, Massachuset¥s, 1975.

47, Lebnan, Meir M., "Laws and Conservatzicn in
Large- Progran Evolutien," ond Softwazte Life Cycle
uanaoemen Wcrkshop, 20-22 xng §f 19787‘?‘ 130=T4 ."‘

us. Frank(James W., "Applications Design_by_ Trial and
Errcr%, Infosysiems, September 1979, p. 76-78.

49, Hall, Patrick A. V., "In Defense of Life Cycles",
SOrtuare Engineering Notes, vol. 7, no. 3, July 198,

P-
50. Lawrsence, M. Je.,, "An Examination of Evolution
234 ngmiggé ..L.S.P oceedings gs.sgé Sixth gggsrnasﬁege,l,
e n Q9 ct¥WaTs Znginesecin IEEET"COMPUIET
i 1SI§T Pfes¥, S SITVEE SEPifg-—HaPjyland, ~ 1982 3.

...............
.....

ENOMCS sl R s
Lo AR

51.

52.

53.

54.

55.

56.

57.

58.

60.

61.

62.

€3.

P ade SUL T AT DM s SRR et et et St bt Bt e Sedh S e A g N e Aot St Jeme amn . P———

Urkan,G. L. and_ Karash, R., "“Evlutionary _Mogdel
gg%%dln v, Jourral of Marketing Research, vol. 8,

Swartcut William and Balzer, Robert, = "On the

%ne{;tab%e‘. Inxegtwlnlgg s of fSp§c1§égatlon_ 326
mplementation ommupnications of the ! vol.

not 7, July 1982,°B.tH35sgggons 2% LA& =2 ’

Zmud, R. W. and Cox, J. PF., "The Implementation
Prccess: A Change Approach", MIS Quarterly, vol. 3,
June 1979, p. 3t-43.

lsiclgnd,D RichﬁdeJ. Jr.,t gThe Process anguPrcduct 85
stem Design anpagement Sciance, voli. no.
M3y 1578, po BbTeBEEL o= 2GR2ACS8. ’ ’

Alavi, Mayram and Henderson, John C., "An Evcluticnary
Strategy fcr Isrlementing a Decision Support Systen",
%%%ggeme%; Science, vol. 27, no. 11, November 1981, p.

B%un, tgrucg dIié" ;T%: Life Cycle--A gebate ovir
Alternative Mode oftwar=2 Engineerin cres vel.
7, no. 4, October 1987“"§T§18-2 - ££20d 2o%2s.

Zvegintzov, Nicholas, "What Life, What Cycle?", AFIPS
Confersnce Procesedings National Compuzer Conference,
veline e 7985585 048 sed.

den, G. R., "Stop the Life-Cycle, I Want tc Ge=
°f§§§§§ Engineering Notes, voi. 7, nc. 2, Arcil

tn

[S
- %

o/

Kling, Rolk and Scacchi, Walt, "Computing as Sccial
Action: The Sccial Dynamics of Computing in _Complex
Crganizations," in Advances in goggute;g, Velume 19,
gagsgg%l C. fov1ts, .+ AcademIC PTess, NY, 1980, p.

Kling, Rob and Scacchi, Walt, "The Web of Computing:
Ccmputer K Technology as Social Organizaticn," In
Advapces in.Computars, Volume 21, Marshall C. foviss,
4., ¥&aZmid TFess, fy, 1982, pe 1-90.

Eerrisford, Thcmas and Wetherbe, James, "Heuristic
Developmen<: A Redesign of Systeas Des:in", MIS
Quarterly, vol. 3, no. 1, March 1979, p. 11-19 T
Naumann, = Justus D. and Jenkins, A. Milton,
“Erototyping: The New Paradigm for sttems
Devaelcemen%®, MIS Quar+terly, Septembér 1982, p. 29-u44,

Rich, Charlies and Waters, Richard C., "The Disciplirned
Use of Sigaplifying _Assumptions," Softwg;e gng&gggg;nc
Notes, vol. 7, no. 5, Decéember iQSZT'ﬁT 50=757, -

=22 ’

93

M B A e A Paaliire S R ————r i |

64. Earl, Michael J4., "Prototyge Systems for Accounting,
Information and_Control® ccountlnq Organlzat-cna
and Scciety, vcl. 3, no. 2, T97B, 61-T7]

65. Basili, victor R. and Turner, Albert J., "Iterazive
Enhancement: A Practical Technliue for Sof*ware
Development®, Pirst Internationa confarerce or :
ggjtware Engineerrfng, IEEE Computer Society, 1975, 7P. ‘

66. Asner, Michael, King, Alan and Darks, Raymond G.,
"pPrototyping: A Low Risk Apgroach to Develcpinag
Ccmglex Systen- (Part 2--Metiodology) ¥, Business
Quarterly, vol. b6, no. 4, Winter 1981, p. 34-387

67. McCracken, Daniel D., ™A Maverick Approach to Systems {
Analysis and Des;gn " U;g;eg§ Analxg‘s and Design: A
Foundation for thée WITIiam W. Co*TeTman and

OthEEs, . 'EIsev1 ~§c1°nce Pubiishizg Cc., New
Ycrk, 1982, pe uu46-451 .

;ﬁ €8. Bally, Laurent, Brittan, John, and Wagner, Karl H., "2
Prototype Agprcach o Information System Desigr and
QS%%lcpment 56 Ig_ormatlon and Management, vél. 1, [

. 69. ge%ier, gark, "Scalg Models land7Rap1d Pgotcgyplr ",
: cftuare inee otes, Vo no. acember
3 FeET052 FEysfes A Se=ex ’ ’
4
{
o 70. Barstcw, David, "Rapid Prototyping, Avtcmatic ‘
' Prcgramm’ng, and ZXperimental Sciences:, Sc::iare
%% 1%e§;133 Notgs, vol. 7, no. 5, December 1982,
. 7. Blum, 3ruce 1I., "Rapid Prototyping of Infcrmation {
Yanagement Systens" SOftuare Enginesfing Not=s, vcli. |
- 12. Davis, Alan M., "Rapid Protctyping using Executalble
Requirements_ Spacifications", Sof+ware Engineering

Nofes, vol. 7, no. 5, December 1982, p. Pe 39-TT°

73. ge%*her. Martia S., V"HapplnglfO'7Rap 3 Pgotogypin ",
of+wa lncerl otes, Vo no. ecember
F953iaEe Fhdsqssnand ’ ’ ‘

£
e Mo

74, Cohben, Donald, Swartout, William and Balzer, Rotert,

'0sing 5ymbollc Execution to Charactarize Behavior",
ware
[4

Egglnae'i_g Notes, vol. 7, no. 5, Decemter

75.

x

AN
Y
x ‘ll

in Bichard Ww. ed. "Daveloping Systems b
+g§1ng“ EDP Anaiz -_,'vc-. 19, ng. g9,ySep embng

W A
=290
M
e Yo R=)
-t
. Ol-‘

94

R N N I D e

76. Mascn

, R, E. A. and cary, T._ T., . "an Apgrcach
Prctotyplgg I% gﬁacgége lInfSEmatlcn 5 Myc*?ggg
capunlications gf the vo no. a
FeEIRRazdgachs of Hle d - ey
77. McCoyd, Gerard C. and Mitchell, John R., "System
Sketchlng The _Generation of Rapid Prototypes for
Transaction _Based _Systems", So twa'a En 1neer1ng
Nctes, vol. 7, no. 5, December 1982, p. 127=7
78. Taylor, Tamara and Standish, Thomas A., "Initial
hcughts cn Rarid Proto;plng Tnchnlques" Software
Nécember 1987, P-

- =i '

glneerlng Notés, vol
166,

79. Asper, Michael and King, Alan R., “P'o*cgyplng:
LOH'RlSk Apprcach to_ Devleoping Complex S;s;e s"
g%s%ﬁes= Quarterly, vol. 46, no. 3, Autumn 1981, p.

80. Ramanathan, J. and Shubra, C. J., "Use of Anotated
Schemes for Developlng Prototype Programs," Sofiware
Enqlneerlng Notes, vol. 7, no. 5, CeCember 1982, "p.

81. Heitmeyer, C., lLandwehr, C. and Cornwell, M., "The Use
of Quick Prototypes_ in the Secure u¢11tary Message
Systems Project" Software E glueerl_g Notes, vol. '
no. 5, Decedmber 19827

Mitchell
n and

1, G "Prototyping: An Apr
atio

gggcg Evaluati. 1
P 9-197%

mmunicaticn Systenm
Regview, vol. 10, no.

’Oﬂtﬂ
H B 0

pie ..
nfo Conm
erf on
S8,

-4 tn

83. Hausen, Hans-Ludwig and Huel’erburg, Mcnika,
"Architecture c¢f Software Systems in theContext of
Softwar= Engineering Enpvironments," Systams
A;c 1tectur° roceedin of the 51xth]
R=q3io na ference, S 8nca an 2ck
t;stf ﬁff3§7'Eﬁglard 1981, p. 147-157

o)
cie
98

84, Scni, Dili "Design and Modeling of TRIAD, an
Adaptable ntegrate Software Environment Ccm uter
Sciénce Guest Llecture, Naval Postgradua%e
Monterey, CA, March 1983

-

chool,

el

85. Lauber, Rudolf "Developm nt Support Systems,"
ccmputer, vol. 5 no. 5, May 1982, p. 36-u46.

T
“la o

€6. Wasssrman, Anthon I., "Automated Development
Env%r?gments," Computer, veol. 14, nc. 4, April 1981,
p- - .

a7. Kernigban, B. %. and Elauger, P. J., "SOf ware Tocls,"

Pi Inte national nference SOf*ware
E';I§gg;1 EE‘CEEFuter‘SEEI‘fy, 1975, p. 8=737"

¥ TY-.—-. m—

95

b s
1y

b il o 0 s g g s - g g I VONILATEG SPUE P WP VR W VT Sy U SNy S S S P

PT— — TR —y—— RPN r——=——.

AD-A132 612 THE_SOFTWARE ENGINEERING PROTOTYPE(U) NAYAL
POSTGRADUATE SCHOOL MONTEREY CA M R KIRCHNER JUN 83

UNCLASSIFIED F/G 9/2

5 S N T A A-an A 20t Thde Jhdn Tte “Aoh SViac AR RN Aaite S A AL S N T:'N’:.'ﬁ'.. < - "'-r:._r-
B S N M I DL RS N S P I Ui g «® et D R

'

=2

FEE
N

2
o

FeeFEEEE

s ;

e - o

2 s e

—
.
—
er
13
Fr

| Q

==
m -

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

...................

Brian W. and uashe¥ John R. WThe JInix
Env%gog&ent,“ Computa2r, vol. 1u, no. &,
p -

88. Kernighan,
Prog amming
April 1981,

B 2 ma e

89. Gutz, Steve, Wasserman, Anthony I., and Spier, Michael
- J., "Personal Development Systess for the Professional
2 Progralner," ccmputer, vol. 14, no. &, April 1981, p.

PP

) 90. Barstow, David R. and_ Shrobe, Howard E., "“Guest ;
Bditorial: © Pro ramnln Environaments," IEEE
%;gn a iona cn ;of vare nglne ring, vol. SE-7, Tno.

91. Teitelman, Warren and Masintsr, Larry, "The Interlisp ;
Progranllng Environment," Computer, vol. 14, no. &,
April 1981, p. 25-33. ¢

92. %ner, Peter, ®"The Ada Laniuage and Eavircament
vaﬁg Enginesring Notes no. 2, April 1986

q3. g. s. gartment of Cefanse, "STONEMAN," gggui:eg_nts
fgﬁ ag; grapming Support Environ m=g ’ FebTuary

oftware

94, Wasserman, Anthony I., wToyard Integrated S
115, 1980,

Developmen* Environments,: Scisntia, vol.

h p. €63-684.

95. Wasserman, n’hong I., mautomated Tools in the
Infcrmatlon stem Deve agment Environment," Autzomatad

salf fof Iigimiien Stgses Dasdiuolidy auiiienine

nd Puhlleh-ng
CO., Amsterdam' 1982 ¢ Do -g

.

PPy v

96. gajaram%n 1 sost "AECharac erlzgt‘cn of150$*wa.e
egign Too s oftware Engipeeri otes, veol. no.
4o °6ltcber 108 2,'%7‘%%* jRganeerild ’ f

97. 0. S De artment of Defense, Ada Joint Progranm O0ffice,
eda thedolcgies: concepts apd Réguiremenis,
ovember ~Y982

9g. grengice. - 3,5 ;}n Analysis of 50§ tware De{elgpment
nvircnmen oftware Engineeri otes, vol. no.
5, Octcber 368 "p“1§ %’s"g £384 ’ f

$9. Korzybski Alfred, S ;gtggsan Sanizy

o N t SAna~Geferal Se@an s, Gth
*§§ %3 § g R s 23z 2883HR==2e o0
Intarnaﬁional Ncn-kristotelzan Library Pub1ishing co.,
Lakeville, Connecticut, 1958.

2dward A., ed. The

- 100. Barr, Avron and Pei enbaun _..Ihe
$ Bidhset ehactiEls N igteltionety Yo ko 1 Bt

96

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111,

it i g Jiagn 28 - —

BEvers,Jack and Vessey, Iris, "The Systems Develcpment
glggnla- A Prcgtall ng Prespectlve," NMIS Quartezly,
]

Delisle Normanp M., Henlcos{ David E., _and Karth,
Ncrman i., *Tccls for Su ‘n Structured Analaszs,

s§§§! eg ;ggig £2§ Ia€t§§§§;§ﬁ '1%§§%? De51gﬁ ~Hollanad

Puklisbhing Co., Aasterdam, 1982, p. 11=-2

Falla, M. E., "The Ganla softvare engineering sgsten,

Igg_suiggtg; Jcuzrnal, vol. 24, rné. 3,

thte, John R., "A Lecision Tool IO* Assxs*lng wltb
en

g Comp rehenelon og L%r g So twagns -3
lifeasied "Tools Tor Iaforaaiily sigtens'bosiqn, 08,

Putlishing Co., Amsterdam, 1982, p. 49265

Cheattan, Thcras E., Jr., "programming Suppor*
Env*rcnlents.“ com uter Scieance Guest Lacture, Naval
Pcestgraduate Scheo Monterey, CA, December 15, 1982.

Lundberq Ben t, "IHT--An Infornation uodell¢ng Tcol,"

Hisfisd Teli cof Safeminien Sngiges bagike, B

Pablishing Co., lnste:dan. 982, Pe 21-30.

Chea*han, Thcmas E., Jr., “Compar*ng Programm*nc
31pgert Envi rcnmaﬂte " Sof+uars ﬁa;:ee::vﬁ
Fnvircoments Nor- -Holland PuBI?§EZ-q Co., aAmsIeTdim,
223 e e S P T

Kuo Jeremy and otkhers, “An Adap*able Softwars
Envircrment tc Support Methodologies," Technical
Report TRIAD-2, [Cepar tment of Computer and Infcrmation
Science, Ohio State University, January 1983.

Kuo, C.o C. H., angd Rananathan Jde,y, "A
Porn—Based roach . En -neer:ng
uethodologies, j tgg Gth Intefnatic
SEREREPEFSD (IERETCOREIEE

Kuc, H. C., and others, "SySten Architecture cf an
Adaptable Syftware Environment Department of
CcaE utei and Information Sczence Ohio State
University, Technical Repor:t, TRIAD-TR-1-83.

Rasanathan, Jd. and Soni, D., "Design and
Isplementation of an Adpatable Software Envzronnﬂnt,
tc te published in the JQurnal of Computer Languages.

il e i ai

112.

113.

14,

115.

116.

117.

118.

Kangasallo. Hannu ang others, "Systea D--An Integrated
fer S stele Design, Inplenentat1on and Data Base

Man qelent, Automatéd Too orma*lor s:em
3%12% Agtonassa Tendc, 528, lg%aggar

-ﬁolland Publlshing Co., Amsterdam,

67-83.

Heckel Faul 0651gn1ng Translator Software

Qg;gggiiog, voi. 26, no. ebruary 1980, p. 134- 135

Jenkins, C. Wesle "Application Prototypin A Case

gtudy, 'Per n cg'Evgipgtgon‘nev1ew, YE ?0, nc. 1,
pring 1

Grcner, Gabriel P., and others, "Requirements Analysis
in Clincial Research Information Prccassing -- a Case
Stud¥6" Ccomputer, vel. 12, no. 9, Septembér 1979, p.

Hemenwa Kathleen and McCusker, Leo X., “Prototgpi
and Ev uatlng a User Interface," Proceedirg 9I.z

Si th éﬁgg;gg onal Cg&ggter §of wa % aﬁH’Iggfggay§cgs

Sp Ing Eryland. 1982, p. 175 180.
§eus, hHanssB.{ “grotgtypxn More ERea=onab1°
Toach to sten evelopment gg ng¢n €zing
pg gs, vol z no. 5, Decegber i98§‘£

gock:, g:nls, "What is gueilty ang gow. %s i;
aipntained? Iccee gs 2 a Qcietv of
Jalrtaingd? " 1o FFR2545588 135,503, Bg¥ale Seciety of

As .t A o 4 ' A . . o8 v -

_— 1

NN - S

A a
Gty s

te 4

INITIAL DISTRIBUTION LIST

I

No. Ccpies

2

1. Cefense Techyical Informatior Center 2 .
Cileron atl
exandria, VA 2231u a
2. tibrar Code 0142 2)
Naval Ecs graduate School 4
Eonterey, ¢
3, artnent C aistgn Code 59 1 8
i ment o ministrative Sciences
Nava Pcst ra uate School
2 Monterey, 940

4. Curricular O Code 37 1
Ccaputer Techn
Naval Eostg aduate School
Mcnterey, CA 940

S. Frofessor Gerdon C. Howell 2
Lepartment of Infcrnatzon Systems
Georgia State Upiversity
Atlanta, GA 303C3

6. CAPT Bradford D. Mercer, USAF 5
Code 527%

Naval Pestgraduate Schcol
Eonterey, A 93940

- 7. Assccgate Professcr Roger D. Evered 1
- Code S52F%v
¢ Naval Ecstgraduate School
{ Bonterey, CA 93940
8. Asscc, Profassor Roger H. Weissenger-Baylon 1
Code Suur

- Raval Fostgraduate School
+ Monterey, CA 93940

- 9. LCDB Jchn R. Hayes, OSN 1
% Naval Postgraduate school
Mcnterey,
10. e _Michael Kirchn 3
E§u3-%84 AneR 5338 Drg ve
Annandale,
11. Erofessor \A. il*on Jenkines 1

Crerations an gstels Management
Graduate School Of Business

Ipd ana Universi ;

Elccsington, IN 47405

12.

. uag Jane Kirchner 1
avw
a:k, IL 60302

Brs
135
Cak

99

I T T S

;.«i T N T Ay N Ny Ty oy oy oy e T -
K
. 13. Air Force Contract Management Division 1

AFCML/KER .
Ccmputer Systesms Contract Manageamenrt Divisiorn

E!b dded Computer ;esgurces Focal Point .
Kirtland AFB, NN 8711

AEF PP

3 30

! :.
' s
.
. 'H
7 4
% 5
¥
;
t
¥4
b
1
'
9
. .
; o
: .
" =Y
N i
) A
» |
I:ﬂ
]
100]
R
-
N
l G e e e 5

v e s L. Pajd friyey

g .S Wi
WM T Ll N s

